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Splicing noncoding RNAs
from the inside out
Li Yang1,2*

Eukaryotic precursor-messenger RNAs (pre-mRNAs) undergo splicing to remove
intragenic regions (introns) and ligate expressed regions (exons) together. Unlike
exons in the mature messenger RNAs (mRNAs) that are used for translation,
introns that are spliced out of pre-mRNAs were generally believed to lack function
and to be degraded. However, recent studies have revealed that a large group of
spliced introns can escape complete degradation and are processed to generate
noncoding RNAs (ncRNAs), including different types of small RNAs, long-
noncoding RNAs, and circular RNAs. Strikingly, exonic sequences can be also
back-spliced from pre-mRNAs to form stable circular RNAs. Together, the findings
that ncRNAs can be spliced out of mRNA precursors not only expand the ever-
growing repertoire of ncRNAs that originate from different genomic regions, but
also reveal the unexpected transcriptomic complexity and functional capacity of
eukaryotic genomes. © 2015 The Authors. WIREs RNA published by Wiley Periodicals, Inc.
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INTRODUCTION

A fundamental feature of eukaryotic protein-coding
genes is that they are in pieces.1 It is crucial that

intragenic regions (introns1) are spliced out of the
precursor-messenger RNA (pre-mRNA) and expressed
regions (exons1) are ligated together to form a final
mature messenger RNA (mRNA) that encodes for a
protein. The pre-mRNA splicing offers flexibility in
regulating gene expression,1 and in higher eukaryotes,
alternative splicing of a single pre-mRNA yields
multiple mature mRNAs and therefore multiple pro-
tein products.2 Genome-wide studies have suggested
that nearly all human multiexonic protein-coding
genes undergo alternative splicing3,4 to significantly
increase the transcriptomic/proteomic complexity

and hence their functional diversity.2,5 Additionally,
large/long-intergenic/intervening noncoding RNAs
(lincRNAs) were recently demonstrated to be alterna-
tively spliced as well,6 although their splicing efficiency
is relatively low.7 (For simplicity, this review will use
pre-RNA to refer to an unspliced precursor RNA irre-
spective of whether the primary transcript is used to
generate an mRNA or lincRNA.)

Unlike the ligated exons in the mature RNAs, the
intron lariats are generally debranched and ultimately
degraded after splicing (Figure 1(a)). From a coding
perspective, introns were generally regarded as ‘junk’
as they do not influence the sequence of the end prod-
uct.8 However, it is nowwidely recognized that introns
are not just passively removed during splicing, but play
important roles in regulation of gene expression.
Introns harbor diverse cis-regulatory elements that
affect pre-RNA splicing,5 and have various fates that
affect gene expression. For instance, introns can be
retained in the final RNA product. A recent study
reported that intron retention can tune mammalian
transcriptomes by suppression of inappropriately
expressed transcripts.9 Self-splicing group I and group
II introns are catalytically active as ribozyme to guide
their own excision.10–12 These self-splicing group I
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and group II intronic sequences, after spliced out, can
be further processed to yield circular molecules10,13;
however, such circular transcripts are unstable and
their functions are at best limited.14,15

In addition to generating RNA circles from self-
splicing introns10,13 and tRNA introns,16 a variety of
noncoding RNAs (ncRNAs) are processed from
nuclear pre-RNA through the spliceosomal pathway.
These intragenic ncRNAs include many, but not
all, microRNAs (miRNAs),17,18 small nucleolar RNAs
(snoRNAs),19,20 RNase P RNA subunit,21 new type of
long-noncoding RNAs (lncRNAs)22 and circular
RNAs from either excised introns23 or excised
exons.24,25 Different from ncRNAs independently
transcribed from intergenic loci by RNA polymerase
II (RNA Pol II),6,26 the expression of these intragenic

ncRNAs is dependent on the transcription and splicing
of their host pre-RNAs. Importantly, such ncRNAs
play important roles in altering gene expression both
in cis23 and in trans.22,27,28 This review focuses on
the biogenesis of intragenic ncRNA species excised
from the inside of nuclear pre-RNAs by splicing.

A LARGE NUMBER OF miRNAs ARE
PROCESSED FROM SPLICED
INTRONS

The miRNAs are endogenous ncRNA species of
~22 nts that function as guide molecules in post-
transcriptional gene silencing.28–30 The miRNAs play
a key role in both physiological and pathological
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FIGURE 1 | MicroRNAs (MiRNAs) are processed from spliced introns. (a) Eukaryotic precursor RNAs (pre-RNAs) undergo splicing (dash lines) to
remove introns (lines) and ligate exons (bars) together to form either mature mRNAs that are subsequently translated or noncoding RNAs. After splicing,
intron lariats are generally debranched and ultimately degraded. ss, splice site. BP, branchpoint. (b) Drosha/DGCR8-dependent model of canonical
mirtron processing. (c) Splicing-dependent model of mirtron processing. Notably, some mirtrons that derive from small introns have the hairpin exactly
ending at the splice sites to resemble pre-miRNAs, thus do not need to be trimmed by exonucleases.40,49
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processes, such as self-renewal of embryonic stem
cells (ESCs), development, and cancers.31 In the canon-
ical mammalianmiRNA biogenesis pathway, RNAPol
II transcribes a primary miRNA (pri-miRNA) tran-
script, which is 50 capped and 30 polyadenylated.26,32

This pri-miRNA is processed by Drosha/DGCR8
microprocessor to produce a miRNA precursor (pre-
miRNA).33,34 Through an association with Exportin-5,
the pre-miRNA is subsequently exported from nucleus
to cytoplasm,35 where this hairpin intermediate is
cleaved by Dicer to yield a miRNA/miRNA*
duplex.36,37 Finally, the guide (but not the passenger)
strand of the miRNA/miRNA* duplex is incorporated
into the RNA-induced silencing complex (RISC) to
repress gene expression based on miRNA–mRNA
sequence complementarity.38–40

In addition to the canonical biogenesis pathway,
miRNAs can be also produced from introns of protein-
coding genes (termed as mirtrons) in both inverte-
brate41,42 andmammals.43,44 Indeed, a significant pop-
ulation of human and murine miRNAs originate from
mirtrons.45–47 A Drosha/DGCR8-dependent and
splicing-independent model has been proposed to yield
mirtrons. In this model, the intronic pre-miRNA hair-
pin is cleaved from the pre-mRNA by Drosha/DGCR8
prior to the splicing catalysis,18 and then enters the
miRNAbiogenesis pathway (Figure 1(b)). Interestingly,
the split intron by Drosha/DGCR8 showed little effect
on the following exon linkage or mRNA maturation.18

As located within host genes, the expression of some
mirtrons is coregulated by transcription and splicing
of their host pre-RNAs.48 In another splicing-dependent
pathway (Figure 1(c)), after cotranscribed with the host
gene, the pre-miRNA hairpin is excised out of host
pre-RNA with spliceosome, trimmed by exonucleases
(for tailedmirtrons only) and exported to the cytoplasm
where it can be further processed byDicer.40,49Notably,
some mirtrons that derive from small introns have
the hairpin exactly ending at the splice sites to resemble
pre-miRNAs, thus do not need to be trimmed by
exonucleases.40,49

Besides miRNAs, some of Piwi-interacting
RNAs (piRNAs) and endogenous small interfering
RNAs (siRNAs) are also likely to be generated from
introns and exons,46 while the detailed mechanisms
require further investigation. Another type of house-
keeping ncRNA, the catalytic RNA subunit of
RNase P (RPR), has been reported to be processed
from the last intron of an RNA Pol II transcript of
the geneATPsynC in insects/crustaceans,21 while other
animal RPR genes are independently transcribed
from RNA polymerase III. The evolutionary driving
force for this divergence over 500 million years ago is
unknown.21

THEMAJORITY OF HUMAN snoRNAs
ARE PROCESSED FROM SPLICED
INTRONS

SnoRNAs are a family of conserved nuclear ncRNAs
(~70–200 nts in length) that are usually located in
nucleoli and participate in the modification of small
nuclear RNAs (snRNAs)/ribosomal RNAs (rRNAs)
or in the processing of rRNAs during ribosomal matu-
ration.27,50,51 Two types of snoRNAs, box C/D and
box H/ACA snoRNAs, are defined by their conserved
sequence motifs.27 Hundreds of human cellular sno
and scaRNAs (snoRNA variants that localize to Cajal
bodies) have been annotated by snoRNA-LBME-db.52

In yeast, most snoRNAs are produced from independ-
ent transcripts by RNA Pol II.20 While in human,
only a small portion of annotated snoRNAs is likely
produced as independent RNA Pol II transcripts.
Instead, the vast majority of human snoRNAs
reside within introns of their host (coding or noncod-
ing) genes.52,53 During splicing and exonucleolytic
trimming from debranched introns, the assembly with
the snoRNA-associated proteins (snoRNPs) protects
the snoRNA sequences from further exonucleolytic
degradation27,54,55 (Figure 2(a)). The processing of
intronic snoRNA is coupled to splicing; indeed, snoR-
NAs positioned about 70 nts upstream to the 30 splice
site is critical for efficient expression.56 In addition,
the expression of individual snoRNAs from multi-
snoRNA host genes is coordinated with alternative
splicing and nonsense-mediated RNA decay (NMD),
resulting in unbalanced expressions of intronic snoR-
NAs and their cognate spliced RNA from the same host
gene locus.57

The aberrant expression of snoRNAs and their
associated proteins is linked to human diseases. An
extreme example of noncoding genes with snoRNAs
is located at the human imprinted 15q11-q13 locus,
which has been implicated in Prader-Willi/Angelman
syndrome (PWS).19,20 Within this imprinted region,
two clusters of tandemly repeated snoRNAs
(29 SNORD116s and 42 SNORD115s) and several
single snoRNA genes (such as SNORD109A) are pro-
cessed from downstream introns of a gigantic, 470-knt
long-paternal transcript.19,58 The minimal paternal
deletion region associated with PWS (108 kb) removes
SNORD109A, the SNORD116 cluster of 29 similar
snoRNAs and Imprinted in Prader-Willi syndrome
ncRNA (IPW), and the most current published model
suggests that the deficiency of SNORD116s is associ-
ated with PWS.59–61 However, although most snoR-
NAs guide rRNA or snRNA modifications by a base
pairing mechanism, SNORD116s show minimal
complementarity to rRNAs or snRNAs,58 and thus
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are unlikely to function in guiding rRNA/snRNAmod-
ification. In this case, the molecular mechanism of how
SNORD116 snoRNAs are possibly involved in the
PWS remains elusive.

PAIRED snoRNAs STABILIZE A NEW
TYPE OF lncRNAs FROM SPLICED
INTRONS

While most introns are unstable after being spliced
out of pre-RNAs, a large number of lncRNA candi-
dates have been predicted by computational analysis
to originate from postspliced introns.46 In addition,
profiling of the nonpolyadenylated (poly(A)−) RNAs
have revealed mature RNA transcripts from excised
introns,62 such as sno-lncRNAs.22 Unlike the majority

of lncRNAs that contain 50 cap structures and 30

poly(A) tails, sno-lncRNA is a new type of lncRNAs
that are derived from spliced introns and are flanked
by snoRNAs at both termini.22 As they do not contain
poly(A) tails at their 30 ends, sno-lncRNAs have been
missed by most polyadenylated (poly(A)+) RNA-
seq.62 Mechanically, after splicing, introns containing
two snoRNAs are processed from their ends by the
snoRNPmachinery and the internal intronic sequences
between the two snoRNAs are protected, leading to the
formation of lncRNAs with snoRNA ends22

(Figure 2(b)).
Sno-lncRNAs are widely expressed in cells and

tissues and can be produced by either box C/D or
box H/ACA snoRNAs in human genome.22,53 Strik-
ingly, the most abundant sno-lncRNAs in human
embryonic stem cells (hESCs) reside in the PWS
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FIGURE 2 | Small nucleolar RNAs (SnoRNAs) and snoRNA-ended long-noncoding RNAs (sno-lncRNAs) are processed from spliced introns.
(a) SnoRNAs are processed from spliced introns. During splicing and exonucleolytic trimming from debranched introns, the assembly of snoRNA with the
snoRNA-associated proteins (snoRNPs, blue spheres) protects it from further exonucleolytic degradation and leads to the formation of mature snoRNPs.
(b) Sno-lncRNAs are processed from spliced introns and flanked with snoRNAs at both ends. Introns containing two snoRNAs are processed from their
ends by the snoRNP machinery (blue spheres) and the intronic sequences between these two snoRNAs are protected, thus leading to the formation of
lncRNAs with snoRNA ends.
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deletion region.22 There are five sno-lncRNAs that are
produced from the SNORD116 cluster in hESCs.
Rather than localizing to nucleoli or Cajal bodies,
PWS-region sno-lncRNAs strongly accumulate near
to their sites of synthesis, suggesting that they are func-
tionally different from snoRNAs. Importantly, these
PWS-region sno-lncRNAs regulate alternative splicing
by interacting with splicing factor Fox2.22 For exam-
ple, knocking down these sno-lncRNAs resulted in
the aberrant splicing regulation of known Fox2-
targeted cassette exons, many of which are from genes
with a clear connection to neuronal function.22 Likely,
in PWS patients where the PWS region sno-lncRNAs
are not expressed due to the paternal deletion, altered
patterns of Fox2-regulated splicing may happen along
development, possibly causing neurogenetic disorder
in PWS patients. Thus, the finding of PWS region
sno-lncRNAs and their potential role in altering
Fox2-regulated alternative splicing lead to a possible
association between a new class of lncRNAs and
PWS pathogenesis.

Although the primary sequences are highly con-
served from mouse to human, mouse SNORD116s
are scattered in individual introns.53 As one intron con-
taining two snoRNAs is a prerequisite for the biogene-
sis of a sno-lncRNA,53,63 the lack of PWS region
snoRNA pairs within single introns in the mouse
genome may result in undetectable PWS region sno-
lncRNAs in mouse transcriptomes.53 Finally,
genome-wide analysis suggests that only a small por-
tion of paired human snoRNAs are identified in single
introns based on the current splicing annotations. Con-
sidering the widespread tissue-/cell-specific alternative
splicing,64,65 it is reasonable to expect identification
of more sno-lncRNAs when additional RNA-seq data-
sets become available.

CIRCULAR RNAs FROM SPLICED
INTRONS

In addition to sno-lncRNAs, another type of intron-
derived ncRNAs, circular intronic RNAs (ciRNAs),
has been also identified from poly(A)− RNA-seq data-
sets.23 The ciRNAs are produced from excised intron
lariats that fail to be debranched after splicing, leading
to a covalent circle with 20,50-phosphodiester bond
between 50 splice donor site and the branchpoint site
(Figure 3(a)). Different from lariat RNAs containing
a variety length of 30-tails,66 The ciRNAs are derived
from partially processed lariats that do not likely con-
tain 30 linear appendage,23 as only one sharp band on
the native high resolution PAGE (polyacrylamide gel
electrophoresis) could be detected with or without

RNase R (an enzyme that can degrade linear and
Y-structure RNAs, while preserving the loop portion
of a lariat RNA67) treatment.23 Moreover, evidence
at both bioinformatic and experimental levels has
suggested that the formation of ciRNAs depends on a
consensus RNA motif containing a 7-nt GU rich ele-
ment near 50 splice site and an 11-nt C-rich element
near the branchpoint (Figure 3(a)). However, it is still
unclear how these cis-elements function to resist deb-
ranching and what other trans-factors are involved in
this process.

Intron-lariat-derived human ciRNAs are
abundantly localized in the nucleus and are largely
associated with the nuclear insoluble fractionation.23

Some abundant ciRNAs play a cis-regulatory role
in promoting the transcription of their host genes by
associating with the elongation RNA Pol II machin-
ery.23 Additionally, a recent study on some back-
spliced circular RNAs that contain both exons and
introns has suggested a similar function on transcrip-
tion regulation.68 Finally, stable intronic sequence
RNAs (sisRNAs) were also revealed from both oocyte
nucleus69 and cytoplasm70 of Xenopus tropicalis.
However, whether these sisRNAs can form similar
circle structures as ciRNAs remains to be further
investigated.

CIRCULAR RNAs FROM BACK-
SPLICED EXONS

Profiling of poly(A)− RNAs has surprisingly revealed
signals from not only excised introns but also excised
exons,62 which were further proven as circular
RNAs.24 Genome-wide analyses with specific compu-
tational approaches, which identify junction readswith
reversed genomic orientation, successfully identified
thousands of circRNAs from back-spliced exons (cir-
cRNAs) in various cell lines and from different
species.25,71–75 Most circRNA exons are located in
the middle of annotated genes25 and excised from
pre-RNA by back-splicing. Different from canonical
splicing that ligates an upstream50 splice site (50 ss)with
a downstream 30 ss to form a linear RNA, back-splicing
connects a downstream 50 ss with an upstream 30 ss to
yield a circular RNA with 30,50-phosphodiester
bond24,25,71,72,76 (Figure 3(b)). Although catalyzed
by the canonical spliceosomal machinery,77 the effi-
ciency for circRNAs formation is often very low,
possibly due to the unfavorable spliceosome assembly
for back-splicing.25,73,76

Back-splicing competes with canonical splicing
for circRNA biogenesis,76 leading to the ‘lariat inter-
mediate’ or ‘direct back-splicing’ models.24,71,73,78
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The main difference between these two models relates
to the question of timing:which takes placefirst: canon-
ical splicing or back-splicing?76 In the ‘lariat intermedi-
ate’ model, the transcribed pre-RNA first undergo
canonical splicing to generate a linear RNA with
skipped exon(s) and a long intron-lariat intermediate
containing these skipped exon(s). This long intron-
lariat intermediate is further processed by back-splicing
to generate a circRNA. In contrast, pre-RNA might be
‘directly back-spliced’ to first generate a circRNA and
an unusual exon-intron(s)-exon intermediate, which
can be further processed to linear RNAs with skipped
exon(s) or degraded. In fact, both mechanistic possibi-
lities might be used in a context (organism)-dependent
fashion. In lower eukaryotes, such as Schizosaccharo-
myces pombe, circRNA are suggested to favorably gen-
erate through the ‘lariat intermediate’mechanism with
short flanking introns.79 While, in human and mouse,
complementary sequences25,80 (mostly repetitive Alu

elements in human) across long flanking introns can
facilitate ‘direct back-splicing’ by bridging downstream
50 ss close to upstream 30 ss to generate circRNAs76

(Figure 3(b)). In addition to cis-elements, RNA-binding
proteins were also reported to regulate circRNA
biogenesis.75,81–83 It is possible that cis-elements and
trans-factors might work together to synergistically
alter back-spliced circularization, which requires fur-
ther investigation.

Despite lowly expressed in general, some cir-
cRNAs are more abundant than their linear counter-
parts.73 It has been recently reported that circRNAs
are highly enriched in brain (from fly tomammals) with
a potential to regulate synaptic function and to be used
as biomarkers74,83,84; however, the underlying mech-
anism for enhanced expression in the brain is largely
undetermined. Such a differential expression might
reflect an array of possible functions for this new class
of RNAs. First, some circRNAs can function as

(a) (b)

Intron lariat

Circular intronic RNA
(ciRNA)

Failed in
debranching

Exonuclease
trimming

Exon 2 Linear RNA (with exon inclusion)

Back-spliced circular RNA
(circRNA)

Linear RNA (with exon exclusion)

Splicing Splicing

Exon 1 Intron

BP5′ ss 3′ ss

3′ ss5′ ss

3′ ss

3′ ss 5′ ss

Back-
splicing

5′ ss

Exon 4Exon 3Exon 2

Back-splicing

Bridged by cis-elements
and/or trans-factors

Exon 1

FIGURE 3 | Two types of circular RNAs are processed from excised introns or exons. (a) Circular intronic RNAs (CiRNAs) are processed from excised
introns. CiRNAs fail to be debranched after splicing, leading to a covalent circle with 20,50-phosphodiester bond between 50 splice donor site and the
branchpoint site. The formation of ciRNAs depends on a consensus RNA motif containing a 7-nt GU rich element near 50 splice site (magenta bar) and an
11-nt C-rich element near branchpoint (yellow bar). (b) Back-spliced circular RNAs (CircRNAs) are processed from excised exons. Different from canonical
splicing (dashed lines in black), which ligates an upstream 50 splice site (50 ss) with a downstream 30 splice site (30 ss) to form a linear RNA (top), back-
splicing (dashed line in red) connects downstream a 50 ss reversely with an upstream 30 ss to yield a circular RNA with normal 30,50-phosphodiester bond
and an alternatively spliced linear RNA with exon exclusion (bottom). Both complementary sequences and protein factors can facilitate back-splicing by
bridging downstream 50 ss close to upstream 30 ss. See text for details.

Advanced Review wires.wiley.com/rna

656 © 2015 The Authors . WIREs RNA publ ished by Wiley Per iodicals , Inc. Volume 6, November/December 2015



miRNA72,85 or protein sponges,81 but a large scale
analysis revealed that only a limited number of cir-
cRNAs can potentially act as sponges for miRNAs.86

Second, with the competition between splicing and
back-splicing,76,81,87,88 The circRNA biogenesis might
also regulate the alternative splicing of linear RNAs.15

Third, the potential of circRNAs on translation might
further expand the diversity of proteome. Artificial
circRNAs with internal ribosome entry sites (IRESs)
generated from expression vectors are translata-
ble.89,90 However, endogenous circRNAs have not
yet been reported to associate with ribosomes for trans-
lation.71,86 Finally, similar to the intron-derived
ciRNAs,23 some circRNAs with retained introns can
promote transcription of their host genes by interacting
with U1 snRNP and RNA Pol II.68 Despite recent
studies have revealed some biological roles of certain
circRNAs, further investigation is required to gain a
comprehensive understanding of what most other cir-
cRNAs really do in cells.

CONCLUSION

Although generally believed that intragenic sequences
(usually introns) are degraded after splicing and
therefore functionally inconsequential, accumulated
lines of evidence have shown that some spliced introns
can be further processed to produce a variety of

ncRNAs, including new types of lncRNAs. In
addition, recent studies have shown that intragenic
exons can be back-spliced from inside of pre-RNAs
to form RNAs in circle.25,71–74,81 Apparently, the pro-
duction of these intragenic ncRNAs (short or long)
are largely dependent on splicing to occur, but many
questions remain to be addressed. How is the proces-
sing of intragenic ncRNAs linked with other RNA
processing pathways, including transcription,91

NMD,57 and canonical splicing?25,77,81 How are
these different pathways coregulated and crosstalked?
How are different protein cofactors involved in
the entire life cycle of these intragenic ncRNAs?92

Moreover, it appears that the expression of many
intragenic ncRNAs is not conserved across species; it
will be of particular significance to study how and
when such sequences were embedded into or removed
from their host genes in evolution. Finally, as many
of these intragenic ncRNAs were identified from a
combination of high-throughput sequencing and
newly developed computational methods, it will be
not surprising to find other types of ncRNAs by apply-
ing novel genome-wide approaches. Collectively, the
finding that a ncRNA gene is embedded inside of
another gene and can be activated to function by spli-
cing sheds new light on the unanticipated complexity
of transcriptome and the multifaceted regulation by
splicing.
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