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Abstract

Single-cell RNA-seq (scRNA-seq) profiles gene expression with high resolution. Here,
we develop a stepwise computational method-called SCAPTURE to identify, evaluate,
and quantify cleavage and polyadenylation sites (PASs) from 3′ tag-based scRNA-seq.
SCAPTURE detects PASs de novo in single cells with high sensitivity and accuracy,
enabling detection of previously unannotated PASs. Quantified alternative PAS
transcripts refine cell identity analysis beyond gene expression, enriching information
extracted from scRNA-seq data. Using SCAPTURE, we show changes of PAS usage in
PBMCs from infected versus healthy individuals at single-cell resolution.
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Introduction
The advent of single-cell RNA-seq (scRNA-seq) has enabled gene expression analysis

with an unprecedented resolution [1, 2]. Based mainly on differential gene expression

(DGE) [3], scRNA-seq reveals heterogeneity within a bulk of cells [4], complex tissues

[5–8], or even the whole animal [9], resulting in the identification of distinct cell iden-

tities and lineage trajectories, especially in developing or differentiating systems [10,

11]. By taking advantage of machine-based cell isolation, hundreds of thousands of

cells can now be individually processed for RNA enrichment and deep sequencing ana-

lysis [12, 13]. Recently, scRNA-seq technologies that use oligo(dT) priming for cDNA

generation and subsequent short-read sequencing from their 3′-ends (herein called 3′

tag-based scRNA-seq) [14], such as inDrops [15], Drop-seq [12], Seq-Well [16], and

10x Chromium [13], have been broadly adopted. In contrast to full-length scRNA-seq

(such as Smart-seq2) and canonical bulk cell RNA-seq (such as Illumina TruSeq), these

3′ tag-based scRNA-seq data characteristically have an enrichment of reads at the 3′
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ends of genes. For example, a comparison of transcriptome profiling in human PBMCs

with TruSeq, Smart-seq2, and 10x Chromium [17] showed that a bias of mapped reads

to annotated cleavage and polyadenylation sites (PASs) in the 10x Chromium data for

both protein-coding (such as GAPDH, Fig. 1a, b) and noncoding (such as NORAD and

GAS5, Additional file 1: Fig. S1A) genes. By contrast, TruSeq and Smart-seq2 data pro-

file gene expression with reads covering the whole gene body (Fig. 1a, b; Additional file

1: Fig. S1B). As such, 3′ tag-based scRNA-seq datasets can be mined for PAS identifica-

tion and for expression of transcripts using specific PASs.

Fig. 1 Developing SCAPTURE to identify cleavage and polyadenylation sites (PASs) from 3′ tag-based scRNA-
seq. a Comparison of human PBMC transcriptome profiling with different deep sequencing datasets. Wiggle
tracks show an enrichment of 10x Chromium reads (rose) at the 3′ end of the GAPDH gene locus, close to its
known PAS (GENCODE), while reads of TruSeq RNA-seq (gray) and Smart-seq2 (dark blue) cover the whole
gene body. Data were retrieved from published PBMC TruSeq RNA-seq, Smart-seq2, and 10x Chromium [17]. b
Distribution of deep sequencing reads on mRNA genes. Pileup of deep sequencing reads from the same
published datasets (a) indicates enrichment of 10x Chromium reads (rose) at 3′ ends of genes, compared to
coverage of gene bodies by TruSeq RNA-seq (gray) and Smart-seq2 (dark blue) data. The distribution of PASs
on mRNA genes were annotated in GENCODE. c Schematic of a stepwise SCAPTURE pipeline for single-cell PAS
calling, filtering, transcript calculating, and APA analyzing. Top left, calling peaks from 3′ tag-based scRNA-seq
(the first step). Top right, identifying high-confidence PASs with an embedded deep learning neural network
DeepPASS (the second step). Bottom right, quantifying PASs to represent transcript expression at a single-cell
resolution (the third step). Bottom left, applying SCAPTURE to APA analysis at single-cell level (the fourth step).
See “Methods” section for details
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Results
Development of SCAPTURE for PAS analysis with 3′ tag-based scRNA-seq data

To utilize 3′ tag-based scRNA-seq data for PAS analysis, we developed a stepwise compu-

tational pipeline named scRNA-seq analysis for PAS-based transcript expression used to

refine cell identities (SCAPTURE, Fig. 1c; “Methods” section). Briefly, SCAPTURE takes

aligned bam files as input to call peaks that are close to PASs of genes (Fig. 1c, top left).

These called peaks are then evaluated by an embedded deep learning method to select

high-confidence PASs (Fig. 1c, top right). Next, selected PASs are quantified by UMI-

tools [18] to indicate expression of transcripts according to their distinct PAS usage

(Fig. 1c, bottom right). Finally, SCAPTURE identifies altered PAS usage and transcript ex-

pression among different cell types/conditions at the single-cell level (Fig. 1c, bottom left).

Two features of SCAPTURE are of note. First, a deep learning neural network, named

DeepPASS, is embedded in the SCAPTRUE pipeline. It is trained by selecting sequences

through shifting around known PASs with stringent filtering (called stringent PASs for

simplicity, “Methods” section), resulting in identification of high-confidence PASs (Fig. 2a;

Additional file 1: Fig. S2A; Additional file 2: Table S1; “Methods” section). Briefly, a pre-

dicted probability ranging between 0 and 1 is obtained by the DeepPASS model for any

given PAS candidate, followed by classification into a positive site group (predicted prob-

ability > 0.5) or a negative site group (predicted probability ≤ 0.5) (Fig. 2b, “Methods” sec-

tion). Compared with commonly used methods that are based on fixed sequences for

feature extraction (termed DeepPASS-fixed here), DeepPASS achieved a higher area

under curve (AUC) value with the training set (randomly selected from 90% of stringent

PASs, “Methods” section) (Fig. 2c). As a result, by combining a convolutional neural net-

work (CNN) and a recurrent neural network (RNN) for data training, DeepPASS achieved

an AUC over 0.99 when using the validation set (the remaining, independent 10% of strin-

gent PASs, “Methods” section), substantially higher than previously reported methods,

such as DeepPASTA [19] and APARENT [20] (Fig. 2d; “Methods” section). Notably, this

sequence selection through shifting strategy in DeepPASS can not only generate a larger

training set than using fixed sequences, boosting its accuracy in PAS, but also makes pre-

dictions less sensitive to positions, increasing its sensitivity (Fig. 2e). Profiling active motifs

of 128 kernels from first convolutional layer of DeepPASS showed that it was able to cap-

ture key motifs of PASs. Top captured motifs included canonical poly(A) signal AAUAAA

(Entropy: 4.76) and its variants located 25 bp upstream of the cleavage site, as well as

downstream U-rich motifs and the typical CA nucleotides located at the cleavage site

(Additional file 1: Fig. S2B), further suggesting that DeepPASS is able to identify high-

confidence PASs.
Another key feature of SCAPTURE is that the quantitative information of identified

PASs is used to represent expression of transcript isoforms with distinct PASs (Fig. 1c,

bottom right). It is well known that, through the alternative polyadenylation (APA)

mechanism, multiple transcripts with distinct PASs (called APA transcripts) can be

produced from a single-gene locus [21–23], increasing the transcriptomic complexity

of the genome. Differential expression of APA transcripts has been widely examined

across different cell types, but rarely at the single-cell resolution. Since different APA

transcripts harbor distinct PASs, quantified PAS values can be used to represent differ-

ential transcript expression (DTE) at given gene loci. Hence, the DTE information gen-

erated by SCAPTURE can help refine cell identity analysis beyond gene expression (Fig.
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1c, bottom right; “Methods” section). By contrast, typical scRNA-seq tools perform cell

clustering by using the DGE information only [3].

SCAPTURE for exonic PAS analysis with human PBMC scRNA-seq data

We applied SCAPTURE to profile PASs from publicly available scRNA-seq datasets of

human PBMCs based on the 10x Genomics platform (https://support.10xgenomics.

com/single-cell-gene-expression/datasets) (six datasets in total; Additional file 1: Fig.

S3A, B). Of the 83,390 raw peaks called in exons, 35,378 high-confidence PASs (se-

lected by DeepPASS with predicted probability > 0.5) were identified by SCAPTURE

(Fig. 3a, left; Additional file 1: Fig. S4A; Additional file 3: Table S2). Among them,

29,664 (83.8%) peaks overlapped with known PASs, which were named overlapped ex-

onic PASs. The rest were named non-overlapped exonic PASs (Fig. 3a, right; Additional

Fig. 2 Constructing the embedded DeepPASS model for position-insensitive prediction of PASs. a
Construction of known PAS set and stringent PAS set. Previously reported PASs in at least two databases of
PolyA_DB3, PolyA-seq, and PolyASite (v2.0) or in the manually examined GENCODE annotation were
combined to achieve known PAS set. Stringent PAS set was further constructed from known PASs that are
annotated in all three databases or in the GENCODE annotation and was split with a 9:1 ratio between a
model training set and an independent validation set for DeepPASS and DeepPAS-fixed models. b
Schematic of DeepPASS construction and evaluation. Left, data processing strategy and model architecture.
Middle, a sequence shifting strategy around stringent PASs was applied to construct positive training set for
establishing DeepPASS model. Right, the generally used strategy with fixed sequences around stringent
PASs for DeepPAS-fixed model. See “Methods” section for details. c The ROC curves of DeepPASS and
DeepPAS-fixed to indicate their training performance. AUC values of DeepPASS (red) and DeepPAS-fixed
(blue) were shown in plot. d The ROC curves of DeepPASS, DeepPASTA, and APARENT on the validation set.
AUC values of DeepPASS (red), DeepPASTA (green), and APARENT (purple) were shown in plot from five
independent validation repeats with very low standard errors. ***p < 0.001, statistical significance was
assessed by Student’s t test. See “Methods” section for details. e Position-insensitive prediction of PASs with
DeepPASS model. To assess positional tolerance of different models, 200-bp sequences shifting around the
PASs in validation set with 5 bp stride were used to test accuracy of each model. The percentage
represents true positive rate of each condition. DeepPASS (red) is more tolerant than DeepPAS-fixed (blue)
and previously reported DeepPASTA (green) and APARENT (purple) models
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Fig. 3 Applying SCAPTURE pipeline to study PASs in human PBMC datasets. a Application of SCAPTURE to
identify exonic PASs from 3′ tag-based scRNA-seq datasets. Left, statistics of called peaks and identified
PASs in six PBMC scRNA-seq datasets from 10x Genomics. Right, comparison of SCAPTURE-identified exonic
PASs with known exonic PASs. Overlapped or non-overlapped exonic PASs identified by SCAPTURE were
analyzed with known PAS annotation shown in Fig. 2a. b Nucleotide distribution of sequences at known
(left), overlapped (middle), and non-overlapped (right) exonic PASs. Upstream (–) 100 bp to downstream (+)
100 bp sequences of PASs were analyzed. c Validation of SCAPTURE-identified non-overlapped PASs. Four
such cases (salmon rectangle) in the NADK, PPP2R5C, MTX1, and SMIM11B gene loci highlighted with their
polyadenylation signals (AAUAAA motif) and further designed for validation by PCR as previously reported
[26]. A SCAPTURE-identified PAS that was previously annotated in the NADK gene locus (purple rectangle)
was shown as a positive control. Top panel, TruSeq RNA-seq (gray), Smart-seq2 (dark blue), and 10x
Chromium (rose) scRNA-seq from published datasets [17]. Middle panel, wiggle tracks from one of 10x
Genomics PBMC scRNA-seq datasets (the 10 k PBMC dataset) were indicated. Bottom panel, Ribo–RNA-seq
datasets of bulk cells from normal (gray) and SLE patient (dark red) PBMC samples [25]. PCR primers were
shown in the bottom for experimental validation. See “Methods” section for details. Asterisk, non-specific
RNA-seq signals due to multiple mapping. d Validation of SCAPTURE-identified non-overlapped exonic
PASs. Corresponding PCR products of these non-overlapped exonic PASs (salmon arrow) were shown with
correct sizes. One overlapped exonic PAS (purple arrow) that was also identified by SCAPTURE in the NADK
gene locus was shown as the positive control. As negative controls, no PCR products from downstream
regions of these SCAPTURE-identified non-overlapped PASs were detected. Mixed PBMC RNA samples from
SLE patients previously examined by Liu et al. [25] were used for this validation. Of note, additional nested
primers were designed to validate the SCAPTURE-identified PAS in the PPP2R5C locus. e Comparison of
signature poly(A) signal motifs from exonic PASs identified by SCAPTURE or by two other recently reported
pipelines, Sierra [28] and scAPA [29]. f Nucleotide distribution of sequences around exonic PASs identified
by SCAPTURE, Sierra, or scAPA in six PBMC datasets from 10x Genomics. Upstream (–) 100 bp to
downstream (+) 100 bp sequences of PASs were analyzed
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file 1: Fig. S4B). To examine the accuracy of predicted PASs, we profiled their sur-

rounding nucleotides [24]. As shown in Fig. 3b, a typical nucleotide distribution profile

was observed in the overlapped exonic PASs, similar to that of known exonic PASs. For

non-overlapped exonic PASs, although they had a similar nucleotide distribution pro-

file, downstream U-rich sequences were less enriched (Fig. 3b). Nevertheless, while

slightly lower than that of overlapped ones (81.4%), 68.4% of non-overlapped exonic

PASs harbored canonical AAUAAA or its variants, which was similar to that of known

PASs (67.2%) but much higher than that of SCAPTURE-rejected ones (36.7%; Add-

itional file 1: Fig. S4C).

Of note, most of SCAPTURE-identified non-overlapped exonic PASs located near the

3′ ends of transcripts, similar to those of known and overlapped PASs (Additional file

1: Fig. S4D). Four of SCAPTURE-identified non-overlapped exonic PASs located at

NADK, PPP2R5C, MTX1, and SMIM11B gene loci (Fig. 3c), with DeepPASS predicted

probabilities of 0.85~0.99 and exhibiting relatively high scRNA-seq peaks, were chosen

for further validation. Their authenticity was supported by TruSeq and/or Smart-seq2

datasets based on different PBMC samples [17], including those from autoimmune dis-

ease systemic lupus erythematosus (SLE) patients [25] (Fig. 3c). In addition, we carried

out RT-PCR validation of these non-overlapped exonic PASs with mixed PBMC RNA

samples from human SLE patients [25], using a similar strategy for PAS validation to

that reported previously [26]. With designed primer sets (Additional file 4: Table S3)

located within scRNA-seq peaks, all four of these SCAPTURE-identified non-

overlapped (distal) exonic PASs were confirmed by PCR products with correct sizes

(Fig. 3d). As a positive control, a reported (proximal) PAS in the last exon of NADK

gene was also confirmed (Fig. 3d). By contrast, PCR signals from downstream regions

of these SCAPTURE-identified non-overlapped exonic PASs were barely detectable

(Fig. 3d). Together, these results suggest that many SCAPTURE-identified non-

overlapped PASs might be bona fide PASs (Fig. 3c).

SCAPTURE for intronic PAS analysis

PAS profiling often suffers from false positives that are generated from internal priming

of oligo(dT) at A-rich sequences, especially in intronic regions [27, 28]. To evaluate

whether our DeepPASS model could deal with the internal priming problem, we used

intergenic sequences with consecutive adenines that were far away from annotated

PASs as pseudo internal priming sites for examination. Strikingly, DeepPASS could effi-

ciently identify these sites as true negative sites (> 94.9%; Additional file 1: Fig. S5A).

Additionally, DeepPASS successfully identified internal priming sites with different

lengths of consecutive adenines (Additional file 1: Fig. S5A), supporting its robustness

in addressing the internal priming issue. With the stringent calling by SCAPTURE, we

detected 16,082 intronic PASs from the 10x Genomics PBMC samples (Additional file

1: Fig. S5B; Additional file 3: Table S2). Although ~ 18.6% of SCAPTURE-identified in-

tronic PASs overlapped with known intronic sites, this number is still much higher

than those (~ 2.1% and 2.0%, respectively) of Sierra- and scAPA-identified intronic

PASs (Additional file 1: Fig. S5C). Peak quantification indicated that intronic PAS tran-

scripts were expressed at much lower levels compared to those of exonic PAS ones

(Additional file 1: Fig. S5D), which may explain why these sites were not annotated in

Li et al. Genome Biology          (2021) 22:221 Page 6 of 24



public databases. Nevertheless, both overlapped and non-overlapped intronic PASs

showed comparable occurrences of AAUAAA and its variants to that of known intronic

PASs (78.5% and 82.7% vs 78.0%, respectively; Additional file 1: Fig. S5E), which were

much higher than that of SCAPTURE-rejected ones (51.8%; Additional file 1: Fig. S5E).

Using RT-PCR [26], we further confirmed four SCAPTURE-identified, non-

overlapped intronic PASs (Additional file 1: Fig. S5F), all of which passed the evaluation

by the DeepPASS model with predicted probabilities ranging from 0.58 to 0.92 and had

no more than six consecutive adenines in their surrounding regions. With nested PCR

primers (Additional file 1: Fig. S5G), all these SCAPTURE-identified non-overlapped

intronic PASs could be successfully confirmed by corresponding PCR products with

correct sizes (Additional file 1: Fig. S5H). In contrast, no PCR signals could be detected

from their downstream regions. This observation thus indicates that some of SCAP-

TURE-identified non-overlapped intronic PASs are true positives. In spite of this, due

to the challenge in calling intronic PAS, we advocate that additional attention should

be paid in the study of intronic PASs, perhaps with more specifically developed

methodologies.

Comparison of SCAPTURE with other methods

Two methods, Sierra [28] and scAPA [29], were recently reported to analyze PASs from

scRNA-seq data (Additional file 1: Fig. S6A). For the same human PBMC scRNA-seq

datasets based on the 10x Genomics platform, SCAPTURE identified more exonic

PASs (mean = 21,274) than did Sierra and scAPA (mean = 18,166 or 11,046, respect-

ively; Fig. 3e; Additional files 5, 6, 7 and 8: Table S4-7). To further confirm the reliabil-

ity of SCAPTURE, we selected for validation five additional non-overlapped exonic

PASs that were identified by SCAPTURE (with a predicted probability of 0.58~0.88 and

relatively high peaks, Additional file 1: Fig. S6B) but not by Sierra or scAPA (Additional

file 4: Table S3). By using a similar PCR strategy for PAS validation (Fig. 3d; Additional

file 1: Fig. S5H) with nested PCR primers (Additional file 1: Fig. S6C), all these non-

overlapped exonic PASs were confirmed (Additional file 1: Fig. S6D). In addition, the

SCAPTURE-identified exonic PASs displayed higher average frequencies of AAUAAA

and its variant than those by Sierra and scAPA (82.2% by SCAPTURE vs 58.7% by Si-

erra or 60.4% by scAPA; Fig. 3e). Moreover, SCAPTURE and Sierra performed better

on identified exonic PASs than did scAPA, as evidenced by nucleotide distributions

(comparing Fig. 3f with Fig. 3b). The motif preference (Fig. 3e) and nucleotide distribu-

tion (Fig. 3f) analyses both supported higher accuracy of SCAPTURE than the other

two pipelines. Finally, although SCAPTURE identified fewer intronic PAS candidates

than Sierra or scAPA (Additional files 5, 6, 7 and 8: Table S4-7), those SCAPTURE-

identified intronic PASs exhibited higher average frequencies of AAUAAA and its vari-

ant than those by Sierra and scAPA (83.2% by SCAPTURE vs 50.8% by Sierra or 28.3%

by scAPA; Additional file 1: Fig. S6E). Nucleotide distribution analysis also supported

SCAPTURE’s better performance in detecting intronic PASs than Sierra and scAPA,

because the latter two both identified PASs with downstream A-rich sequences, a hall-

mark of the internal priming issue (Additional file 1: Fig. S6F). Taken together, our data

indicate that SCAPTURE captures PAS information from 3′ tag-based scRNA-seq data

with high sensitivity and accuracy.
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SCAPTURE has high sensitivity and specificity

To calculate the sensitivity and specificity of SCAPTURE, 34,108 PAS peaks called by

the first step of SCAPTURE with expression of RPM ≥ 1 (reads calculated from Cell

Ranger mapped BAM files within identified peak regions of PASs, “Methods” section)

from examined PBMC samples were used for two distinct classifications (Additional file

1: Fig. S7A). On the one hand, 34,108 expressed peaks were filtered through the Deep-

PASS model to obtain “predicted” positive PASs (with predicted probability score > 0.5)

or “predicted” negative PASs (with predicted probability score ≤ 0.5). On the other

hand, with a previously published method [30] to quantify and evaluate PASs by en-

richment scores (Additional file 1: Fig. S7B), 34,108 expressed peaks were also divided

into two groups as “actual” positive PASs (enrichment score ≥ 2) or “actual” negative

PASs (enrichment score < 2). With these predicted and actual sets, the sensitivity and

specificity of SCAPTURE were calculated to be 0.69 and 0.66, respectively, with an F1
score of 0.74 (Additional file 1: Fig. S7C). Similar sensitivity and specificity values of

SCAPTURE were obtained when different enrichment scores (≥ 1.5, 1.75, 2, 2.25, or

2.5, respectively) as cutoffs were used to divide “actual” positive and negative PAS sites

(Additional file 1: Fig. S7C).

To further compare SCAPTURE with Sierra and scAPA in recapturing stringent ex-

onic PASs in databases. In both training and validation sets, ~ 71% and 70% of

expressed stringent exonic PASs in examined PBMCs with RPM ≥ 1 (reads calculated

from Cell Ranger mapped BAM files within upstream 400 bp of stringent PASs,

“Methods” section) could be respectively identified by SCAPTURE, indicating that its

sensitivity (Additional file 1: Fig. S7D and S7E) is similar to that calculated by the en-

richment score (Additional file 1: Fig. S7C). By contrast, the sensitivity scores of Sierra

and scAPA were about 60% and 47%, respectively (Additional file 1: Fig. S7D and S7E).

These results together indicate that SCAPTURE has a higher sensitivity in PAS calling.

SCAPTURE quantifies APA transcripts for refined cell identity analysis

We next reasoned that quantified PAS values from 3′ tag-based scRNA-seq could rep-

resent the expression of corresponding APA transcripts (Additional file 1: Fig. S8) and

thus facilitate subsequent single-cell clustering. Different to the commonly used DGE-

based methods, the DTE data from SCAPTURE embody multiple APA transcript ex-

pression information from single-gene loci, due to different PAS usages (Fig. 4a). Im-

portantly, over half of the genes detected in human PBMC datasets from 10x Genomics

expressed two or more APA transcripts (Fig. 4b, c) and, among the top 2000 high vari-

able PAS-based features, ~ 60.0% of them expressed APA transcripts (Fig. 4d). Hence,

DTE information provides an opportunity to further refine cell identities, beyond the

informion from DGE data.

Parallel analyses demonstrated that SCAPTURE analysis using DTE had a similar

power on sample integration, dimension reduction, and unsupervised clustering to the

canonical Seurat protocol [31] using DGE (Additional file 1: Fig. S9A-C; Additional file

9: Table S8). However, while both approaches could accurately identify major cell types,

the numbers of each cell type were different (Fig. 4e). More cells were unassigned by

Seurat than by SCAPTURE (237 vs 172; Fig. 4e). In addition, unassigned cells in DTE

analysis were clustered away from all other cell types (Fig. 4e, left), suggesting that they
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were truly distinct populations. By contrast, unassigned cells were clustered close to

natural killer cells (NKCs) in DGE analysis (Fig. 4e, right), suggesting that cell cluster-

ing by DGE might not resolve cell identities as well. Direct comparisons showed that

many of the unassigned cells in DGE analysis could be clustered by DTE to known cell

types, such as dendritic cells (DCs) or NKCs (Fig. 4f). Moreover, the similarity of these

Fig. 4 Using quantified PASs to represent distinct transcript expression for refining cell identities. a
Schematic of single-cell analyses with either differential gene expression (DGE) or differential transcript
expression (DTE) with SCAPTURE-identified and SCAPTURE-quantified PASs. b Numbers of expressed
transcripts per gene in combined six PBMC datasets from 10x Genomics. c Number of expressed genes or
transcripts in combined six PBMC datasets from 10x Genomics. d Gene distribution of top 2000 highly
variable PAS-based transcript features. Of note, the majority of these top variable features are associated
with genes expressing APA transcripts. e Phylogenetic analysis of cell types clustered by DTE with
SCAPTURE (left) or by DGE with the conventional Seurat protocol [31] (right). f Cross comparison of cell
types assigned by DTE or DGE. g Comparison of marker gene expression between DGE-assigned major cell
types (black) and DGE-unassigned but DTE-assigned cells (red). Of note, among the DGE-unassigned but
DTE-assigned cells, some showed similar marker gene expression patterns as natural killer cells (NKCs; 68
out of 237) or dendritic cells (DCs; 48 out of 237). h Phylogenetic re-analysis of cell types clustered by DTE
(left) or by DGE (right). DGE-unassigned but DTE-assigned cells are highlighted in both clusters (red)
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unassigned cells by DGE to their corresponding NKCs or DCs was supported by their

comparable patterns of marker gene expression (Additional file 10: Table S9), which

were then manually sub-grouped to “unassigned to NKCs” and “unassigned to DCs,”

respectively (Fig. 4 g; Additional file 1: Fig. S9D, “Methods” section). As expected, these

unassigned cells could be re-clustered close to DCs or NKCs after manual subgrouping

(Fig. 4h). Together, these results highlight the advantage of transcript-level analysis of-

fered by SCAPTURE in single-cell studies.

SCAPTURE identifies altered PAS usages in patients infected with SARS-CoV-2

By comparing proximal and distal PAS usages in the benchmark PBMC scRNA-seq

data, we found less proximal PAS usage in monocytes compared to other major types

of immune cells, including DCs, T cells, B cells, and NKCs (Fig. 5a). Next, we applied

SCAPTURE to PBMC scRNA-seq data from healthy individuals or COVID-19 patients

infected with SARS-CoV-2 [32] (Fig. 5b). In total, nine PBMC scRNA-seq samples were

from four severe COVID-19 patients and five healthy individuals (“Methods” section)

[32] (Fig. 5c). The performance of SCAPTURE, including batch effect removal, dimen-

sion reduction, and unsupervised clustering, was consistent with regular DGE-based

analyses (Additional file 1: Fig. S10A; Additional file 11: Table S10). Similarly, less prox-

imal PAS usage in monocytes of PBMCs was detected in both healthy individuals and

severe COVID-19 patients (Fig. 5d, e). The differential PAS usages between monocytes

and DCs at some gene loci are shown in Fig. 5f. These genes have known functions in

activation of innate/adaptive immune response, antigen processing/presentation via

MHC, or dendritic spine development, suggesting distinct APA functions in different

types of immune cells.

Strikingly, compared to those in healthy individuals, a general preference of proximal

PAS usage, indicating 3′UTR shortening, was detected in all major PBMC cells of se-

vere COVID-19 patients (Fig. 5g). This result was in line with previous bulk cell data

indicating preferential activation of proximal PASs in PBMCs upon infections [33, 34].

Therefore, 3′UTR shortening in PMBCs may be a common phenomenon after viral in-

fection, including SARS-CoV-2. Moreover, GO analysis of altered proximal PAS usage

between healthy and COVID-19 samples showed functional enrichment of genes in-

volved in immune responses, Fc receptor signal pathway, B cell activation, etc. (Add-

itional file 1: Fig. S10B; Additional file 12: Table S11). Additional profiling of immune

response-related genes highlighted the preferential proximal PAS usage of immuno-

globulin genes, such as IGHM, IGHG1, IGHG3, and IGHA2, especially in B cells and

plasma cells of COVID-19 samples (Fig. 5h; Additional file 1: Fig. S10C). It has been

previously reported that the usage of proximal PAS in immunoglobulin heavy chain

genes, such as IGHM [35, 36], is important to their protein functions. For example, the

IGHM isoform using the proximal PAS encodes a secreted form of IgM antibody,

whereas the isoform using the distal PAS encodes a membrane-bound form of IgM

antibody [37]. Thus, the preferential proximal PAS usage in immunoglobulin heavy

chain genes in COVID-19 patients as revealed by SCAPTURE is in good agreement

with the general APA site switch after viral infection. Of note, while DGE analysis also

indicated expression changes of these immunoglobulin heavy chain genes in COVID-

19 patients (mostly enhanced, Additional file 1: Fig. S10D), DTE analysis by
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Fig. 5 Identifying altered PAS usages upon SARS-CoV-2 infection. a Less proximal PAS usage in monocytes
than other immune cell types, such as DCs, in six PBMC scRNA-seq datasets from 10x Genomics. b
Schematic of APA analysis by SCAPTURE to compare PAS usage changes between healthy individuals and
severe COVID-19 patients with SARS-CoV-2 infection at single-cell level. See “Methods” section for details. c
UMAP plots showing DTE-based single-cell clustering of PBMC scRNA-seq datasets from healthy individuals
and COVID-19 patients by SCAPTURE. Left, single cells labeled with disease group. Right, single cells labeled
with annotated cell type. d UMAP plots showing global preference of proximal PAS usage in healthy
individuals and COVID-19 patients at single-cell level. “Methods” section for details. e Proximal PAS usage in
immune cell types from PBMC scRNA-seq datasets of healthy individuals (left) and COVID-19 (right) patients.
f Genes with altered PAS usage between monocytes and DCs. Examples of known genes with reported
functions, such as activation of innate/adaptive immune response, antigen processing/presentation via
MHC, or dendritic spine development, were shown. g Global preference of proximal PAS usage in different
immune cell types from COVID-19 samples. Statistical significance was assessed by Kolmogorov-Smirnov
test. h Preferential proximal PAS usage of some immunoglobulin genes in B cells (left) and plasma cells
(right) of COVID-19 samples. Statistical significance was assessed with Seurat (“Methods” section)
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SCAPTURE provided a more refined picture of expression changes of these genes at

the transcript isoform level (Fig. 5h).

Discussion and conclusion
In this study, we report a stepwise computational pipeline SCAPTURE for de novo

identifying PASs from 3′ tag-based scRNA-seq datasets (Fig. 1). With an embedded

deep learning neural network DeepPASS, which extracts features from sequences shift-

ing around known PASs (Fig. 2), SCAPTURE efficiently identifies PASs, as shown in

using a benchmark 3′ tag-based scRNA-seq dataset of normal PBMCs from 10x Gen-

omics, including thousands of novel PAS sites (Fig. 3). Notably, these novel PASs har-

bor a similar nucleotide distribution profile to known PASs (Fig. 3e, f). With a

previously developed PCR strategy for PAS validation [26], we corroborated a few of

these novel exonic and intronic PASs (Fig. 3d; Additional file 1: Fig. S5H and S6D).

Compared to other models with fixed sequences for training or other reported Deep-

PASTA [19] and APARENT [20] methods, the DeepPASS method used in SCAPTURE

showed higher AUCs for position-insensitive prediction of PASs (Fig. 2c–e). SCAP

TURE also showed higher sensitivity and accuracy than Sierra and scAPA pipelines

(Additional file 1: Fig. S6 and S7). On the other hand, while more reliable than Sierra

and scAPA (Additional file 1: Fig. S5), SCAPTURE could suffer from false positives in

intronic PAS identification due to their low expression [27, 28]. Thus, cautions are

needed when calling intronic PASs from scRNA-seq data.

Another feature of SCAPTURE is using quantified PAS values from scRNA-seq data

to represent the expression of APA transcripts, providing additional molecular signa-

tures of gene expression for refined cell identity analysis (Fig. 4). Differential PAS usage

in different cell types was observed in immune cells of PBMCs from either normal/

healthy samples or severe COVID-19 patients (Fig. 5a, e). In addition, compared to

those in healthy individuals, differential PAS usage, especially a general preference to-

ward proximal PAS usage leading to shortened 3′UTRs, was detected in all major

PBMC cell types of COVID-19 patients (Fig. 5g). Consistently, the preferential proximal

PAS usage of some immunoglobulin heavy chain genes in B cells and plasma cells from

COVID-19 patients (Fig. 5h; Additional file 1: Fig. S10C) is in good agreement with ac-

tivated immune response upon SARS-CoV-2 infection [37]. These results further sup-

port the notion that PAS usage is substantially regulated upon infection [33, 34],

leading to differential expression of APA transcripts. This finding is consistent with re-

cent studies indicating the roles of secreted antibodies from immunoglobulin genes in

neutralizing SARS-CoV-2 virus [38–40].

In summary, we present the SCAPTURE pipeline to identify PASs in single cells.

SCAPTURE detects PASs precisely with the incorporation of a deep learning model,

DeepPASS. In addition, we show SCAPTURE quantifies PASs from scRNA-seq data-

sets, which aids in refinement of single-cell clustering by using APA transcript expres-

sion. Finally, we profile different PAS usages between healthy individuals and COVID-

19 patients and identify the tendency of proximal PAS usage in many immune

response-related genes upon SARS-CoV-2 infection. We envisage that, with fast-

growing scRNA-seq datasets, SCAPTURE can produce more precise PAS atlas at the

single-cell levels, further refining single-cell clustering and shedding light on APA func-

tions under diverse physiological and pathological conditions.
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Methods
Collection of reported PASs from different annotations to obtain known PASs

Four publicly available databases of PASs were used in this study, including manually

annotated poly(A) sites in GENCODE (v35) (n = 49,942) and other three databases

from published literatures: PolyA_DB3 [41] (n = 290,051), PolyA-seq [42] (n = 514,262)

and PolyASite [43] (v2.0, n = 569,005). To obtain annotated PASs as positive controls,

previously reported PASs in at least two databases of PolyA_DB3, PolyA-seq, and Poly-

ASite (v2.0) or in the GENCODE annotation were combined to get 673,956 known

PASs (Additional file 1: Fig. S2A, left), which were used to compare with pipeline-

called PASs from scRNA-seq datasets in this study. If any of these 673,956 known PASs

were found to be located in the regions between upstream 50 bp to downstream 25 bp

of 3′ ends of called PAS peaks, such called PAS peaks were treated as overlapped sites

with known PASs. Of note, among the 673,956 known PASs, 251,071 of them were

identified in all three databases, including PolyA_DB3 [41], PolyA-seq [42] and PolyA-

Site [43], or GENCODE annotation, and were further classified as stringent PASs for

the model training and validation (Additional file 1: Fig. S2A, right) (detailed below).

Collection of published scRNA-seq and bulk cell RNA-seq data for analysis

Multiple types of RNA-seq datasets from independent resources were used in this

study. A collection of bulk cell RNA-seq (library prepared with Illumina TruSeq), full-

length scRNA-seq (Smart-seq2, specifically) and 3′ tag-based scRNA-seq (10x Chro-

mium, specifically) datasets of human PBMCs, was obtained from a published literature

by Ding et al. [17], individually called as TruSeq, Smart-seq2, or 10x Chromium in this

study. Another collection of six 10x Chromium datasets from human PBMCs, was

downloaded from 10x Genomics company website (https://support.10xgenomics.com/

single-cell-gene-expression/datasets). According to different single-cell numbers, they

were individually named as 3 k, 4 k, 5 k, 6 k, 8 k or 10 k PBMC sample. Wiggle tracks of

10 k PBMC sample from 10x Genomics were used as examples to show the results ana-

lyzed by SCAPTURE pipeline (Fig. 3c; Additional file 1: Fig. S3B-C, S5F, S6B and S8).

The third collection of bulk cell RNA-seq datasets were generated with ribosomal

RNA-depleted RNAs of monocytes, B cells or T cells from PBMCs from SLE patients

or normal donors [25]. In the current study, RNA-seq reads of monocytes, B cells and

T cells from SLE patients or normal donors were pooled together for visualization. The

last collection related to COVID-19 study including PBMC scRNA-seq datasets from

five healthy individuals and four severe COVID-19 patients [32].

Construction of SCAPTURE method

A stepwise computational method, SCAPTURE, was developed to capture PAS infor-

mation from scRNA-seq data, and quantify alternatively polyadenylated transcripts for

refining cell identities and studying APA regulation. SCAPTURE consists of three

major steps to call peaks, to evaluate them for high-confidence PAS candidates and to

finally quantify PASs. Since different transcripts harbor distinct PASs, quantified PAS

values can be applied to represent differential transcript expression (DTE) at given gene

loci to refine single-cell identities and perform APA analysis.
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Step 1: peak calling at the transcript level

Aligned BAM file, usually generated from Cell Ranger [13] (v4.0), was used as input to

call peaks for subsequent PAS evaluation. Giving the fact of highly variable gene ex-

pression in scRNA-seq datasets, the relatively low expressed genes would be over-

whelmed due to insufficient saturation or putatively rare cell types. To achieve high

sensitivity, transcript-level peak calling was applied to detect peak signal at transcript

level for a given gene locus using HOMER findPeaks (parameter: -size 400 -minDist 10

-strand separate -F 0 -L 0 -C 0 -gsize -tagThreshold). It has been reported that the typ-

ical read coverage of single PAS was a normal distribution-like curve and read coverage

of adjacent PASs would overlap together [29]. As such, normality test and additional

multimodality test were performed to assess peak signal of single PAS or adjacent

PASs, respectively. After that, regions of called peaks with ≥ 50% overlapping from the

same gene loci were aggregated and only the maximumly expressed peak was remained

for subsequent analyses. After aggregation, read counts of peaks were quantified and

low coverage peaks (read count percentage ≤ 1% among all peaks in the same gene loci)

were removed. Additionally, for intronic PASs, we removed PASs with consecutive ade-

nines ≥ 8 to avoid intronic internal priming sites.

Step 2: PAS evaluation with an embedded deep learning neural network

Raw peaks called from scRNA-seq read signals contain PASs, but also suffer from false

positive sites that are likely generated by aberrant read augment or internal priming of

oligo(dT) at A-rich sequences during library construction. To efficiently identify high-

confidence PASs from these called peaks, a deep learning neural network that was

trained by sequences shifting (thus referred to as DeepPASS) around randomly selected

stringent PASs was developed and embedded to evaluate called peaks from 3′ tag-

based scRNA-seq. Peaks with a positive prediction (predicted probability > 0.5 by Deep-

PASS) were considered as high-confidence PASs in further analysis. See below for de-

tailed DeepPASS development (detailed below).

Step 3: quantifying PASs to represent expression of alternatively polyadenylated transcripts

SCAPTURE could assign PASs of a gene to multiple transcripts that are produced at

the same gene locus through alternative polyadenylation. Additionally, the width of

peaks from 10x Chromium scRNA-seq is about 400 bp, longer than the average length

of human exons (262 bp, GENCODE v34 hg38) and mouse exons (287 bp, GENCODE

vM25 mm10), suggesting the called PAS peaks can span multiple exons. As such,

SCAPTURE could partially decode the splicing information to assign peaks for corre-

sponding transcripts in given gene loci. After transcript assignment, SCAPTURE-identi-

fied PASs were used to build a PAS-based GTF format annotation. To quantify PAS-

based transcripts at a single-cell level, UMI-tools (v1.0.1) protocol was utilized to gen-

erated barcode count matrices. Briefly, reads from input aligned BAM file were re-

assigned to PAS-based GTF annotation using featureCounts (parameter: -a GTF.file -t

exon -g gene_id -M -O --largestOverlap -s 1 -R BAM --Rpath). The re-assigned BAM

was used to calculate UMI counts at single-cell resolution for PAS-based transcript

using UMI-tools counts (parameter: --extract-umi-method = tag --umi-tag = UB --cell-

tag = CB --per-gene --gene-tag = XT --assigned-status-tag = XS --per-cell --wide-
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format-cell-counts). The final count matrix of PAS-based transcript is in wide format

and could be directly analyzed in downstream single-cell tools like Seurat.

Comparison of PAS calling by SCAPTURE with other pipelines

Two previously reported pipelines, Sierra [28] and scAPA [29], were also applied for

PAS calling from the same scRNA-seq human PBMC datasets from 10x Genomics with

default parameters. The same gene annotation of GENCODE (v34 hg38) was also used

to call PASs for Sierra. Since scAPA was developed with its own built-in reference of

GENCODE (v33 hg19), genomic intervals of scAPA-called peaks were transferred to

hg38 annotation using UCSC LiftOver for comparison.

Development of DeepPASS embedded in SCAPTURE to evaluate PASs

A deep learning neural network, DeepPASS, was developed and embedded in

SCAPTURE to evaluate called PAS peaks from 3′ tag-based scRNA-seq datasets for

high-confidence PASs. A predicted probability ranging between 0 and 1 of a given can-

didate PAS is obtained by the DeepPASS model, resulting in its classification as a posi-

tive site (probability > 0.5) or a negative site (probability ≤ 0.5). DeepPASS consists of

four main steps to achieve a position-insensitive judgement on PASs.

Step 1: training set construction

Stringent PASs were split with a 9:1 ratio between a model training set and an inde-

pendent validation set (225,964 and 25,107, respectively) for the development of Deep-

PASS and DeepPAS-fixed. Specifically, 225,964 stringent PASs in the training set were

used as input for DeepPASS and DeepPAS-fixed, while 25,107 stringent PASs in the

validation set were used for comparison across different neural network models. In

total, these 225,964 stringent PASs in the training set were used as positive sites to

train DeepPASS and DeepPAS-fixed models in this study. For DeepPASS model, 200

bp sequences shifting around these PASs with a normal distribution (μ = 0, σ = 10)

were first extracted, followed by removal of redundant sequences to construct a posi-

tive training set (n = 2,259,640, ~ 10 sequences per stringent PAS, Fig. 2b). For

DeepPAS-fixed model, 200-bp sequences with fixed positions around these PASs (−

100 ~ + 100 bp) were extracted, followed by removal of redundant sequences to con-

struct its positive training set (n = 225,964). The same amounts of negative sequences,

2,259,640 for DeepPASS or 225,964 for DeepPAS-fixed, were constructed with 200 bp

sequences randomly extracted in intergenic regions without overlapping with any of

the annotated PASs in three databases or GENCODE. Of note, AUC values barely

changed when different amounts of CDS/UTR sequences (up to 25%) were used as

negative training sequences (data not shown).

Step 2: model architecture

Both DeepPASS and DeepPAS-fixed are hybrid models of a convolutional neural net-

work (CNN) and a recurrent neural network (RNN), which are constructed with Ten-

sorFlow v2.0.0 backend (http://tensorflow.org/) in Python v3.7.8. Both models can be

summarized as:
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Oi ¼ f Softmax f Dense ReLU f BiLSTM f MaxPooling f Conv ReLU f Conv ReLU Xi
� �

Each 200 bp sequence is transformed to One-Hot-Coded Matrix (Xi ), including bin-

ary vectors representing the presence or absence of 4 nucleotides: A (1, 0, 0, 0), T (0, 1,

0, 0), G (0, 0, 1, 0), C (0, 0, 0, 1), and labeled with 1 as being extracted around positive

PASs or 0 as being extracted from negative non-poly(A) sites.

Given the characteristic cis-element of PASs, the CNN module is used to capture the

core sequence around PASs with two convolutional layers utilizing Rectified Linear

Unit (ReLU) activation function and subsequent max pooling layer. The first convolu-

tional layer has 128 filters with 12-mer width and 4 channels. The second convolutional

layer has 64 filters covering 128 output channels derived from the first layer, where the

filters are 6-mer wide. The max pooling layer is used to subsample the signal from the

previous layer by a stride of 4.

Considering the potential correlations of different cis-elements around PASs, a bi-

directional long short-term memory (BiLSTM) layer is applied in a modified architec-

ture of RNN. BiLSTM layer follows the CNN module to maintain the information in

the context of DNA sequence appropriately. The BiLSTM layer has 128 units to process

the output from the previous CNN module sequentially with two opposite directions

and then passes the signal to a dense layer with 1024 hidden units and 0.3 dropout ra-

tio. Then, dense layer connects with two output nodes (Oi ) using softmax activation

function to predict the probabilities of two classes separately. Finally, DeepPASS pre-

dicts a certain class by choosing the maximal probability of each class from Oi.

Step 3: model training

DeepPASS and DeepPAS-fixed models were trained using corresponding training se-

quences (described in Step 1: training set construction) with a batch size of 5000 and

100 epochs. Early stopping was set with a patience of 10 rounds to terminate training

process if no increased performance was observed. The model with best performance

during training was kept at last.

Step 4: investigating model learning features

To extract the motifs obtained by DeepPASS, the matrix filters in the first convolu-

tional layer scanned through input DNA sequences and reported subsequences with

maximal filter activation as reported strategy [44]. Then position probability matrix

(PPM) was calculated by aligning the union of subsequences from each filter. Consider-

ing the biological significances of poly(A) signals, only the positive PAS sequences in

the training set were used for PPM calculation. Total 128 PPMs with 12-mer width

were retrieved from the first convolutional layer of CNN and subsequently converted

to position weight matrix (PWM). PWMs were sorted by entropy values using Desc-

Tools and visualized using R package ggseqlogo. PWM motif distribution on sequences

around PASs was calculated using MEME centrimo.

Comparison of DeepPASS with other models

DeepPASS was compared with other poly(A) site prediction models, such as Deep-

PASTA [19] and APARENT [20], to assess its performance in PAS evaluation. The in-

dependent validation set with 25,107 stringent PASs (Step 1: training set construction)
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that were not used for model training were randomly selected (n = 15,000) for com-

parison with five repeats. A matched set of 200-bp negative sequences was randomly

extracted in intergenic regions (without overlapping with any of the annotated PASs in

three databases or GENCODE). For DeepPASTA, input sequences were formatted as

previously described [19]. For APARENT, extra 100 Ns were individually added to both

the start and the end of each input sequence as APARENT model requires to avoid

PASs close to the start or the end of the sequences for scoring (https://github.com/

johli/aparent/issues/3). To evaluate their sensitivities and specificities of three models,

receiver operating characteristic curves (ROC) were plotted and area under curve

(AUC) values were calculated by true positive rates (TPRs) and false positive rates

(FPRs) on predicted outcomes.

Motif analyses of poly(A) signals around called PASs

Four motifs of poly(A) signals, including AAUAAA and its variants (AUUAAA,

A[GC]UAAA, AA[GC]AAA), were examined in regions from upstream 50 bp to down-

stream 25 bp of 3′ ends of called PASs. For their distribution, the 200-bp sequences

around 3′ ends of called PASs (− 100 ~ + 100 bp) were extracted and profiled along the

sequences using MEME centrimo (parameter: --verbosity 1 --norc).

Quantification of PASs in scRNA-seq dataset

To quantify expression/abundance of PASs, we calculated and normalized the number

of mapped reads in its peak region of each PAS. For PASs identified by SCAPTURE or

other tools, we directly used the reported peak region of PASs for read counting. For

known PASs reported in databases, we collected reads mapped to their upstream 400-

bp regions of annotated cleavage sites (usually only one or several nucleotides). If the

PAS covers multiple transcripts in a gene, the maximumly expressed region was se-

lected to represent the actual peak region of PAS. Of note, an average 400-bp width of

scRNA-seq peaks was observed from multiple 3′ tag-based scRNA-seq datasets [29]

and in this study (data not shown). Read counting was conducted by featureCounts

(version 1.6.2, parameter: -M -O -F GTF -t exon -g gene_id -s 1 -Q 3) for RPM calcula-

tion (normalized by the total number of mapped reads in each sample and multiple by

one million).

Evaluation of PASs identified in scRNA-seq dataset by enrichment scores

Enrichment scores of SCAPTURE-identified PASs were calculated according to a previ-

ously published method for PAS quantification from bulk cell RNA-seq [30]. In theory,

an accurate PAS is located at the 3′ boundary of its RNA-seq peak, resulting in a high

read count in its upstream region and a low read count in its downstream region. In

this study, we extended to use this strategy for similar PAS quantification from 3′ tag-

based scRNA-seq datasets (Additional file 1: Fig. S7). Read counts within 400-bp up-

stream or 400-bp downstream region of given PASs were independently obtained as de-

scribed in the previous section “Quantification of PASs in scRNA-seq dataset,” and

enrichment scores were calculated as:
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Enrichment score ¼ log2
RPMupstream þ 0:1
RPMdownstream þ 0:1

Sensitivity and specificity of SCAPTURE evaluated with enrichment scores

To evaluate sensitivity and specificity of the SCAPTURE pipeline, sets of true positive,

false positive, true negative, and false negative PASs are required (https://en.wikipedia.

org/wiki/Confusion_matrix). Briefly, 34,108 expressed peaks with RPM ≥ 1 called by

the first step of SCAPTURE from examined PBMC samples were divided into two

groups: “predicted” positive (with probability > 0.5) and “predicted” negative (with

probability ≤ 0.5) PAS sites. The same 34,108 peaks were also examined to obtain their

enrichment scores as described above. “Actual” positive and negative sites were selected

with an enrichment score ≥ 2 or < 2, respectively. These “predicted” and “actual” sites

led to a confusion matrix of true positive, false positive, true negative, and false negative

for the evaluation of sensitivity and specificity of the DeepPASS model. Different cri-

teria were used for selection of “actual” positive and negative sites with enrichment

scores ≥ 1.5, 1.75, 2, 2.25, or 2.5, all resulting in similar sensitivity and specificity of

DeepPASS.

Single-cell analysis with Seurat

All six scRNA-seq PBMC datasets from 10x Genomics were pre-processed by universal

tool Cell Ranger [13] (v4.0). Briefly, the genome reference was built using Cell Ranger

mkref with genome and gene annotation from GENCODE (v34, hg38) with default pa-

rameters. Main steps of scRNA-seq data pre-processing, including genome alignment,

cell barcode identification and UMIs incorporation, were conducted by using Cell Ran-

ger count with default parameters. The generated feature-barcode matrices were used

to performed downstream single-cell analysis with the R package Seurat (v3.2.2) [31].

Cell quality control was applied to remove single-cell libraries with low qualities. Three

filters were used to perform cell selection: (1) the proportion of mitochondrial counts ≤

20%; (2) number of UMI counts ≥ 800; (3) number of detected genes ≥ 500. Filtered

cells were normalized for subsequent cell clustering performance. Filtered feature-

barcode matrices were normalized and then used to calculate gene variation for six

PBMC samples individually. Top 2000 of highly variable genes were selected to conduct

sample integration using canonical correlation analysis (CCA) by Seurat. After integra-

tion, principal component analysis (PCA) was applied to perform linear dimensional re-

duction and the returned top 50 principal components (PCs) were kept. To apply

unsupervised clustering, a KNN graph was built on the top 50 PCs to identify cell clus-

ters with resolution of 0.3 with the FindClusters function.

Cell type annotations of different cell clusters in human PBMC samples were based

on the expression of marker genes collected from PanglaoDB [45] and/or previous

studies [46–48]. Six major cell types, including T cells, B cells, monocytes, natural killer

cells, dendritic cells, and platelets, and some of their subtypes were clustered in these

human PBMC scRNA-seq datasets from 10x Genomics. To visualize individual cells,

uniform manifold approximation and projection (UMAP) was used to project cells in a

low-dimensional space. All single cells were labeled with different colors in UMAP plot
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according to their samples, cluster identities, and cell type information, respectively

(Additional file 1: S9A).

PAS-based transcript-level single-cell analysis

Since multiple transcripts that harbor distinct PASs can be produced from single-gene

loci, values of quantified PASs by SCAPTURE could be theoretically applied to repre-

sent expression of corresponding APA transcripts due to different PAS usages. In this

case, SCAPTURE could apply DTE values as input to perform single-cell analysis. Sev-

eral steps, including PAS-based transcript expression matrix calculating, DTE level

single-cell analyzing, and comparing with canonical DGE results, were included in the

final step of the SCAPTURE pipeline for single-cell clustering.

To generate DTE matrices for six PBMC scRNA-seq datasets from 10x Genomics,

single cells that passed quality control step (described in “Canonical single-cell analysis

with Seurat”) were used to calculate UMI counts per APA transcript in SCAPTURE

pipeline. The output transcript expression matrices were loaded into Seurat for down-

stream analysis. DTE level single-cell analyzing mainly followed the protocol of canon-

ical DGE level analyzing by Seurat. First, for expression quality control, the lowly

expressed transcripts with detected cell number ≤ 0.5% were filtered out. The filtered

APA transcript matrices were normalized and used to calculate variation of transcripts

with distinct PASs. Top 2000 variable APA transcripts were kept and used to perform

sample integration with CCA method. Then, the dimensional reduction and unsuper-

vised clustering analysis were applied to single cells based on DTE by SCAPTURE

using same parameter with canonical DGE analyzing by Seurat (PCs = 50, resolution =

0.3). Cell clusters by DTE values were subsequently used to assign cell types in PBMCs

with collected marker genes.

To evaluate their classification effects on cell type clustering, phylogenetic trees of

cell types clustered by DTE or DGE values were individually built by using Seurat

BuildClusterTree with top 800 variable features. To compare their differences, the cell

type-to-barcode information by DTE or DGE values was used to calculate confusion

matrix and further visualization (Additional file 9: Table S8). Cells were unassigned by

DGE (Fig. 4e–f) were manually sub-grouped to “unassigned to NKCs” and “unassigned

to DCs” according to their DTE-based assignment. This re-assignment was further con-

firmed by their distinct marker gene expression (Additional file 10: Table S9), shown in

Fig. 4g, and visualized by an additional phylogenetic analysis (Fig. 4h).

Proximal PAS usage of single cells

To calculate proximal PAS usage of genes, we quantify expression levels of all identified

PASs at single-cell level (Step 3 of “Construction of SCAPTURE pipeline”). These iden-

tified PASs were then sorted by their distances to 3′ ends of genes. The proximal PAS

usage was mainly defined as the ratio of proximal PAS to the rest of other PASs on a

given gene. Altered APA transcript differences between different cell types or condi-

tions were analyzed using Seurat FindMarkers function. Genes with an altered proximal

PAS usage below certain thresholds (logFC ≥ 1.2, P ≤ 0.05 and min.pct ≥ 0.3) were con-

sidered to be significant.
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Proximal PAS usage ¼ log2
CPMproximal þ 1
P

CPMrest þ 1

To globally evaluate the preference of proximal PAS usage between single cells, we

calculated the mean value of proximal PAS usage across expressed polyadenylated

genes per cell. Then, the preference of proximal PAS of single cells were further scaled

by Z-score among examined cell groups in scRNA-seq datasets. The resulted score

could be further plotted using UMAP projection or other statistic methods to represent

the degree of proximal PAS usage (3′UTR shortening) of all genes in single cells. In

this study, we excluded platelet cells in calculating the preference of proximal PAS

usage, due to their low RNA contents (Fig. 5d). As shown in Fig. 5a and e, the mono-

cyte group represented a combination of CD14+ and CD16+ monocytes, the DC group

represented a combination of DC, DC2, and plasmacytoid DCs, the T cell group repre-

sented a combination of CD4+ and CD8+ T cells, and the B cell group represented a

combination of B cells and plasma cells, and the NKC group represented a combination

of NKCs and NKT cells.

Gene ontology analysis

For each immune cell type in PBMCs, we profiled gene sets with differently altered

PAS usage between healthy individuals and severe COVID-19 patients. Then, we per-

formed GO analysis of these genes using clusterProfiler enrichGO function (ont = “BP,”

pAdjustMethod = “fdr,” pvalueCutoff = 0.05, qvalueCutoff = 0.3) and reduced redun-

dancy of GO terms by simplify function (cutoff = 0.8, by = “p.adjust,” select_fun =

min). Finally, GO terms with P ≤ 0.05 in at least one cell type were kept.

RT-PCR validation of SCAPTURE-identified non-overlapped PASs

Total RNAs from PBMCs of systemic lupus erythematosus (SLE) patients were mixed

after Trizol extraction (Life technologies). These patient samples were previously col-

lected from Renji Hospital, Shanghai Jiao Tong University School of Medicine, fulfilling

the 1997 American College of Rheumatology (ACR) classification criteria for SLE [49].

The study was approved by the Research Ethics Board of Renji Hospital, Shanghai Jiao

Tong University School of Medicine. Written informed consent was signed before sam-

ple collection. After treated with DNase I (Ambion, DNA-freeTM kit), total RNAs were

reverse-transcribed with SuperScript III (Invitrogen) for cDNAs with a specific RT-

primer (GCTGTCAACGATACGCTACGTAACGGCATGACAGTGTTTTTTTTTT

TTTTTTTTTT) containing oligo(dT) and adaptor sequences (Additional file 4: Table

S3). PCR was performed by using 2 × Taq Plus Master Mix (Vazyme) according to the

manufacturer’s protocol with gene specific primer sets (Additional file 4: Table S3) for

SCAPTURE-identified exonic and intronic PAS validation. Of note, all four intronic

PASs and six out of nine of exonic PASs were validated by two rounds of PCR reac-

tions, and correspondingly their negative controls were also amplified by two rounds of

PCR reactions (Additional file 4: Table S3). All PCR products were loaded on native

Agarose gels (2%) and products with expected sizes were observed for PAS validation.
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Statistical analyses

Statistically significant differences were assessed as described in correspondent figure

legends. Normality and unimodality statistic tests in SCAPTURE pipeline were per-

formed using R package diptest (v0.75-7) and nortest (v1.0-4), respectively. All statistic

tests were performed with the R platform (v4.0.0).
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