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Highlights
Multiple datasets and computational
approaches have been developed for
genome-wide circular RNA (circRNA)
profiling.

The unified key principle in genome-
wide circRNA profiling is to identify
reads mapped to circRNA-featured
back-splicing junctions (BSJs).

It is essential to consider cognate linear
RNA expression and effects for func-
tional circRNA quantification and charac-
terization.
Numerous circular RNAs (circRNAs) produced from back-splicing of exon(s)
have been recently revealed on a genome-wide scale across species. Although
generally expressed at a low level, some relatively abundant circRNAs can play
regulatory roles in various biological processes, prompting continuous profiling
of circRNA in broader conditions. Over the past decade, distinct strategies
have been applied in both transcriptome enrichment and bioinformatic tools
for detecting and quantifying circRNAs. Understanding the scope and limitations
of these strategies is crucial for the subsequent annotation and characterization
of circRNAs, especially those with functional potential. Here, we provide an over-
view of different transcriptome enrichment, deep sequencing and computational
approaches for genome-wide circRNA identification, and discuss strategies for
accurate quantification and characterization of circRNA.
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Transcriptome-wide identification of circRNAs
Covalently closedRNAmolecules in nature were first observed in plants as pathogenic viroid RNA
genomes by electron micrographs in the1970s [1]. Since then, a variety of circles of RNA had
been sporadically reported to be produced in other viruses, such as the RNA genomes in hepa-
titis δ virus [2]; from (precursors of) noncoding RNAs, including (but not limited to) mitochondrial
RNAs [3,4], rRNAs [5,6], and tRNAs [7,8]; and frommRNA precursors (pre-mRNAs) in eukaryotic
cells [9,10] (see also reviews in [11–13]). Interestingly, the observation of eukaryotic RNA circles
could be traced back to the original perception by electron micrographs in the late 1970s, mainly
in extracted cytoplasmic fractions of HeLa cells, but the origin and function were unknown [14].

More than a decade later, with distinct biochemical assays, such as PCR cloning, Northern blot-
ting, and RNase H digestion, the exons or introns of some eukaryotic protein-coding genes were
shown to possess the capability to generate stable circular transcripts through different mecha-
nisms [9,10]. On the one hand, a few of the eukaryotic exons can be joined at their consensus
splice sites, but in a scrambled manner, which is now referred to as back-splicing, a process
that links a downstream 5' back-splicing site reversely to an upstream 3' back-splicing site
[12,15] to form a circular transcript (Figure 1, Key figure) [9,16–20]. Strikingly, the circular tran-
script generated from the mouse sex-determining Sry gene was shown to be the predominant
output of its host gene locus, suggesting functional potential of circular Sry transcripts [17]. On
the other hand, intronic sequences could be also accumulated after splicing as lariats, and their
location near transcription sites in the nucleus of eukaryotic cells also indicates their functionality
[10,21]. However, only a handful of scrambled exon-producing RNA circles or intron lariats were
sporadically reported in the 1990s [9,10,16–21].

Whole-transcriptome analyses of circular transcripts were successfully achieved in the early
2010s when nonpolyadenylated RNAs were specifically fractionated for further investigation
[22–24]. Importantly, independent laboratories have convincingly demonstrated that some
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Different biochemical approaches for transcriptome-wide circRNA profiling
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circRNAs generated from back-splicing of exons, or circular intronic RNAs (ciRNAs) stabilized
with a lariat structure could play previously underappreciated roles in the regulation of gene ex-
pression [25–28], strongly promoting studies on circular RNAs. Nowadays, we have learned
that a large number of circRNAs and ciRNAs can be generated from eukaryotic pre-(m)RNAs in
a spliceosome-dependent manner, and the vast majority of them are circRNAs featuring back-
splicing junctions (BSJs) [13,29]. In addition, the production of circRNAs is regulated in multiple
layers and competes with that of linear RNAs [30–35]. Furthermore, some highly expressed
circRNAs have been suggested to be involved in a variety of functions, such as immune re-
sponses and tumorigenesis [36–38] (see also reviews in [13,15,39]) with distinct modes of action
[39–41], shedding new light on the biological significance of circRNAs. Moreover, due to their sta-
bility inside cells and in extracellular fluids, circRNAs are thought to be potential therapeutic tar-
gets and diagnostic biomarkers for diseases such as cancer [42,43]. Finally, both engineered
and endogenous circRNAs were shown to be translatable [44–48], highlighting the use of RNA
circles as novel translational platforms for RNA medicine.

Compared with canonical splicing with a colinear order in linear RNAs, noncolinear BSJs feature
in circRNAs (Figure 1A). In this scenario, identifying sequencing reads mapped to circRNA-
specific BSJs has led to the computational detection of a substantial number of circRNAs from
deep sequencing datasets that are still growing quickly. Since they are largely coexpressed
with their cognate linear RNAs with almost fully overlapping sequences, precisely annotating
and quantifying circRNAs on a genome-wide scale has been challenging [12,15,49]. In this
review, we discuss different strategies for the purification and enrichment of circRNA, distinct
sequencing approaches, and the corresponding computational setups for genome-wide circRNA
profiling, and emphasize the importance of accurate circRNA quantification for cross-sample
comparisons when using distinct strategies.

Different enrichment approaches and sequencing platforms for circRNA profiling
As they are covalently closed without the canonical 3'-polyadenylation tail, large-scale identifica-
tion of circular transcripts fell under the radar of early whole-transcriptomic profiling on
polyadenylated [poly(A)+] RNAs enriched by oligo(dT) beads [50,51], named poly(A)+ RNA-seq
(Figure 1B), but it was achieved by other (circular) RNA enrichment strategies. First, by collecting
fractionations that are not associated with oligo(dT) beads and further depleting redundant
rRNAs, nonpolyadenylated [poly(A)−] RNAs were extracted for deep sequencing [22,52],
named poly(A)− RNA-seq (Figure 1B), leading to genome-wide identification of diverse types of
nonpolyadenylated RNAs, including circRNAs and ciRNAs [23,24,27,32]. Alternatively, rRNA-
depleted (ribo−) RNAs, which contain both poly(A)+ and poly(A)− transcripts, are now widely
applied to deep sequencing, named ribo− RNA-seq (Figure 1B), for profiling circRNA and
ciRNA [26,53,54]. Of note, other types of nonpolyadenylated RNAs other than circRNAs could
be also detected in poly(A)– and ribo– RNA-seq datasets [55]. Moreover, when further enriched
by additional RNase R treatment, which digests linear RNAs, circRNAs and ciRNAs could be
Figure 1. (A) Schematic of canonical splicing (left) and back-splicing (right). (B) Schematic of different RNA-seq approaches with distinct enrichment strategies and/or
sequencing platforms. (C) Contents of circular RNAs (circRNAs) and linear RNAs that can be theoretically detected by different RNA-seq approaches. *, some
circRNAs might be nonspecifically detected in polyadenylated [poly(A)+] RNA-seq. **, some nonpolyadenylated linear RNAs could be detected in poly(A)− RNA-seq.
*** some linear RNAs might be nonspecifically detected in RNaseR RNA-seq due to incomplete degradation by RNase R. (D) Statistics on back-splicing junction (BSJ)-
mapped reads that can be detected by different sequencing methods, normalized by sequencing depth (per billion mapped bases). Deep sequencing datasets are
from 293FT [103] (GEO: GSE172193 and GSE149691), HeLa [22,109,110] (GEO: GSE24399, GSE53328, and GSE90247), and PA1 [35,86] (GSE75733, GSE73325)
cell lines; isoCirc datasets [84] (GEO: GSE141693); and circFL-seq datasets [85] (BioProject: PRJNA722575) were downloaded for this analysis by the CIRCexplorer3/
CLEAR or corresponding pipeline [58]. Of note, different cell lines, sequencing platforms, and other batch effects also could lead to the fluctuations in the numbers of
the BSJ-mapped reads. Abbreviations: bss, back-splicing site; N/A, not available; ss, splicing site.
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significantly enriched and overwhelmed in subsequent deep sequencing, named RNaseR
RNA-seq (Figure 1B). Finally, circRNA profiling has been recently achieved by taking advantage
of long-read sequencing platforms, such as Oxford Nanopore, which generally incorporate
RNase R-treatment before long-read sequencing for circRNA enrichment (Figure 1B).

All these aforementioned datasets have been applied to the genome-wide detection of circRNAs,
and each of them presents unique opportunities and challenges in circRNA profiling due to their
distinct (circular) RNA enrichment strategies and sequencing platforms. Briefly, poly(A)+ RNA-seq
was originally designed to profile mRNAs [and long noncoding (lnc)RNAs] with a 3'-polyadenylated
tail [56] (Figure 1C), but was not intended to identify circRNAs that have no open ends. In this sce-
nario, poly(A)+ RNA-seq datasets are far from ideal for genome-wide circRNA profiling. However,
possibly due to nonspecific binding of circRNAs with oligo(dT)-beads and/or other reasons,
some poly(A)+ RNA-seq reads could be still mapped to circRNA-featuring BSJs, leading to less
efficient circRNA profiling by poly(A)+ RNA-seq [57]. Instead, poly(A)– and ribo– RNA-seq datasets
are more widely used for genome-wide circRNA profiling than poly(A)+ ones. Indeed, about tenfold
more BSJ-mapped reads could be detected by poly(A)− and ribo− RNA-seq (Figure 1D). Theoret-
ically, poly(A)–RNA-seq datasets do not contain polyadenylated (linear) RNAs, while ribo–RNA-seq
datasets consist of both polyadenylated and nonpolyadenylated (circular) RNAs (Figure 1C), mak-
ing them suitable for the comparison of circRNAs with their cognate linear ones than other
sequencing datasets [58,59]. To further enrich circRNAs, pretreatment with RNase R, which is a
3'-to-5' exoribonuclease that efficiently degrades linear RNAs [24,32], before deep sequencing
is generally applied in circRNA identification. About three- to tenfold more BSJ-mapped reads
could be detected in RNase R-treated short- and long-read sequencing datasets than non-
RNase R-treated ones (Figure 1D). Since RNase R treatment removes the false positives resulting
from trans-splicing and/or reverse transcriptase template switching, it has been widely adopted for
validating circRNA [49,60–62]. However, prolongedRNase R incubation can lead to degradation of
some circRNAs [63], especially those with longer sequences [64,65], requiring attention during
studies.

Unified principle of circRNA annotation by identifying the reads mapped to BSJ
sites
Genome-wide profiling of circRNAs from high-throughput sequencing data mainly relies on com-
putational pipelines to detect BSJs featuring circRNA [24,32] (Figure 1A). Regardless of the
distinct (circ)RNA purification/enrichment strategies and different sequencing platforms used
for genome-wide identification of circRNA (Figure 1B,C), a unified principle is applied in nearly
all computational pipelines for reliable annotation of circRNA: identifying sequencing reads
mapped to BSJs. So far, more than a dozen computational methods have been developed for
profiling circRNA from short-read RNA-seq datasets [66]. Depending on how they identify the
readsmapped to BSJs, these computational methods can be simply divided into two categories:
fusion-read-based (Figure 2A) or pseudo-reference-based (Figure 2B) methods [66].

Fusion-read-based methods directly align the sequencing reads to genomic references, followed
by detecting the fusion (or chimeric) reads mapped in a noncolinear manner (Figure 2A). The ac-
curacy and precision of detecting fusion reads are essential for the characterization of circRNA.
Common pipelines capable of extracting fusion reads include TopHat-Fusion [67], STAR [68],
and BWA [69]. After identifying fusion reads, some pipelines, such as CIRCexplorer3/CLEAR
(using TopHat-Fusion, STAR, or BWA) [58], CIRI2 (using BWA) [70], DCC (using STAR) [71],
and MapSplice [72], make use of annotated gene exon information to improve the accuracy of
identifying BSJ-based circRNA. Additionally, some pipelines have also developed unique
strategies for de novo discoveries of circRNAs containing unannotated exons. For example,
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Figure 2. Calls of back-splicing junction (BSJ)-mapped reads for circular RNA (circRNA) annotation. (A) Schematic drawing for fusion-read-basedmethods to
call BSJ-mapped reads. (B) Schematic of pseudo-reference-based methods to call BSJ-mapped reads. (C) Summary of available bioinformatic tools to call BSJ-mapped
reads fromRNA-seq datasets. (D) Schematic of the available bioinformatic tools used to call BSJ-mapped reads from long-read sequencing datasets. Abbreviations: CCS,
cyclic consensus sequences; RCA, rolling circle amplification; RCRT, rolling circle reverse transcription.
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CIRCexplorer3 uses tools such as StringTie [73] or Cufflinks [74] to assemble new transcripts,
while CIRI2 and find_circ use splicing signals, splice site distances, and some other factors to
achieve a similar goal (Figure 2C).

Pseudo-reference-based methods require initial construction of pseudo-BSJ references accord-
ing to existing gene annotation data before mapping (Figure 2B). The pseudo-reference-based
method has been implemented in the KNIFE [75] and NCLScan [76] pipelines to identify reads
mapped to the pseudo-BSJ references (Figure 2C). To remove potential false positives, these
pipelines typically align reads to the genome and transcriptome references first, and then to the
pseudo-BSJ references (Figure 2B). As they rely on the known gene annotations, pseudo-
reference-based methods may not be suitable for de novo discovery of circRNA [75,76].

Although they have been developed by different laboratories with distinct setups and strategies,
most of these computational methods can be used for analyzing all types of short-read RNA-seq
datasets, including the aforementioned poly(A)+, poly(A)−, ribo− and RNaseR methods. By taking
Trends in Genetics, Month 2023, Vol. xx, No. xx 5
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advantage of this commonality, these publicly available computational methods have been exten-
sively compared. It has been shown that certain tools, such as the CIRCexplorer series,
MapSplice, and CIRI series, exhibit relatively better performance with fewer false positives
[77,78]. It was also suggested that using multiple tools for detecting circRNA can provide more
accurate results [77,78], leading to new pipelines that amalgamate a variety of tools. For example,
CircComPara2 [79] integrates CIRCexplorer2, find_circ, and CIRI, whereas CircRNAwrap [80]
unites up to eight circRNA detection tools and multiple circRNA analysis tools. Nevertheless,
for examining RNA-seq datasets with super-high depths (up to 300 million of 2×150 paired-
end reads), a very recent study also highlighted that different levels of sensitivity but not precision
were observed in most computational tools for circRNA profiling [81].

Other than short-read sequencing, circRNA profiling has also successfully been performed
by long-read sequencing. Currently, four types of long-read sequencing datasets, namely
circNick-LRS [82], CIRI-long [83], isoCirc [84], and circFL-seq [85], have been reported for
genome-wide examinations of circRNA. Although they have all been adapted to the same Oxford
Nanopore platform, these four datasets were individually generated with different sample prepa-
ration and processed with corresponding specific computational algorithms for identifying
circRNA. More specifically, CIRI-long, circFL-seq, isoCirc require rolling circle reverse transcrip-
tion (RCRT) or rolling circle amplification (RCA) processes and need a step for identifying cyclic
consensus sequences (CCS) or consensus sequences (Figure 2D). By contrast, circNick-LRS
skips the RCRT or RCA step for direct long-read sequencing of circRNAs (Figure 2D). Compared
with short-read datasets, long-read sequencing datasets have obvious advantages for examining
full-length circRNA and identifying isoforms. For instance, more alternative circularization and
internal alternative splicing events could be detected by long-read sequencing [82–85] than
by short-read RNA-seq methods [29,86]. Thus, despite the limitations of high cost and high
sequencing error rates [83–85], long-read sequencing is at least a beneficial supplement for
full-length annotation of circRNAs [29].

Interestingly, by incorporating cutting-edge approaches such as machine learning, additional
software tools, such as PredcircRNA [87] andWebCircRNA [88], have been recently constructed
to predict the existence of circRNAs with extracted genomic sequence features only. However,
these approaches based on artificial intelligence models cannot be used to explain the differential
expression of circRNAs across cell lines and tissues that have the same genomic DNA sequences.
Of note, several studies have reported systematic comparisons of different strategies, such as
short-read and long-read sequencing datasets, for circRNA quantification [81,89], and additional
tips to ensure efficient circRNA profiling with distinct bioinformatic pipelines have been summarized
[77,78,81].

Challenges in circRNA quantification and subsequent cross-sample comparison
By taking advantage of different computational pipelines to identify reads mapped to BSJs from
various types of sequencing datasets, a significant number of circRNAs have been detected in
various cell lines and tissues under diverse contexts and across distinct species [32,75,90–92],
annotated in different databases, including (but not limited to) CSCD [93], CSCD2 [94], CircRic
[95], TSCD [96], CIRCpedia [97], and CircAtlas [98]. Accurate quantification of these circRNAs
is essential for subsequent analyses, such as cross-sample comparison to find circRNAs with
biological potential.

In line with the unified principle to identify sequencing readsmapped to BSJs by all computational
pipelines for circRNA annotation, the raw number of BSJ-mapped reads has been naturally used
to quantify circRNAs. Obviously, circRNAs with more BSJ-mapped reads are expressed at
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Figure 3. Genome-wide quantification of circular RNAs (circRNAs). (A) Comparison of circRNA quantification by raw
numbers of back-splicing junction (BSJ)-mapped reads (left) or normalized fragments per billion mapped bases (FPB) values
of BSJ-mapped reads (right). Black bars indicate circRNAswith raw numbers of BSJ-mapped reads≥5 (left) or FPBcirc ≥0.5
(right). Gray bars indicate circRNAs with raw numbers of BSJ-mapped reads <5 (left) or FPBcirc <0.5 (right). Six virtual RNA-
seq datasets were randomly extracted from the original HLF cell rRNA-depleted (ribo−) RNA-seq dataset [81] (BioProject:
PRJNA789110) containing about 300 million of 2×150 paired-end reads to mimic different sequencing depths, including
20, 40, 60, 80, 100 and 150 million of 2×150 paired-end reads. (B) Comparison of detected expression levels of circRNAs
from ribo– or RNaseR RNA-seq samples in HLF cells [81]. Light red dots, 28 686 RNase R enriched circRNAs with FC ≥2 in
HLF cells. Light blue dots, 11 318 RNase R-depleted circRNAs with FC ≤0.5 in HLF cells; gray dots, 6336 circRNAs with
0.5< FC <2 in HLF cells. (C) Schematic drawing for direct circRNA and linear RNA expression comparison from ribo− RNA-
seq by FPB values. The expression of circRNA and its cognate linear RNA is individually evaluated by normalized BSJ- and
SJ- mapped reads, as FPBcirc and FPBlinear, respectively. The CIRCscore is further determined by dividing FPBcirc by
FPBlinear to demonstrate the relative circRNA expression. Abbreviations: FC, fold change of FPBcirc from RNaseR RNA-seq
versus FPBcirc from ribo– RNA-seq, evaluated by the CIRCexplorer3/CLEAR pipeline [58]; FPBcirc, BSJ-mapped fragments
per billion mapped bases; FPBlinear, SJ-mapped fragments per billion mapped bases; SJ, splice junction.
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higher levels than those with fewer BSJ-mapped reads in the same datasets. However, since
variable sequencing depths are generally applied in different datasets and studies, using the
absolute numbers of BSJ-mapped reads for cross-sample comparisons can be biased. For
example, along with the increase in sequencing depths from 20, 40, 60, 80, and 100 to 150 million
reads randomly extracted from the same HLF ribo– RNA-seq dataset [81] (BioProject:
PRJNA789110), the number of total circRNAswith≥1 BSJ-mapped reads and of highly expressed
circRNAs with≥5 BSJ-mapped reads both scaled up accordingly (Figure 3A, left). However, when
the read values were normalized by sequencing depth, such as BSJ-mapped fragments per billion
mapped bases (FPB), as used by the CIRCexplorer3/CLEAR pipeline [58], the number of highly-
expressed circRNAs with ≥0.5 FPB, which is similar to ≥6 BSJ-mapped reads from 40 million of
Trends in Genetics, Month 2023, Vol. xx, No. xx 7
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2×150 paired-end reads, remains stable with an increase in the sequencing depths from 20 to 150
million, whereas more circRNAs with lower expression levels (0< FPB <0.5) could be identified by
the increase in sequencing depths (Figure 3A, right). These results suggested that although
circRNAs with lower expression levels could be further detected by the increase in sequencing
depths, highly expressed circRNAs (with ≥0.5 FPB) could be detected with sequencing depths
of even 20 million of 2×150 paired-end reads. It is worthwhile noting that FPB also considers the
read lengths (such as 1×50 versus 1×101) and sequencing strategies (such as single-end versus
paired-end) to normalize BSJ-mapped reads and thus is more tolerant to changes between sam-
ples with different sequencing read lengths and/or strategies [58].

In addition, different purification and enrichment strategies also affect the numbers of BSJ-
mapped reads called from different datasets, such as those with or without RNase R treatment.
As shown in Figure 1D, three- to tenfold more BSJ-mapped reads could be detected in samples
treated with RNase R than in those without RNase R treatment. Since a nonnegatable portion of
the circRNAs were shown to be depleted by RNase R treatment (Figure 3B, light blue dots
indicate RNase R-depleted circRNAs) and different RNase R treatment conditions could also
affect circRNA enrichment [63], quantifying the circRNAs with RNase R datasets and their
cross-sample comparisons might be biased. It is also worth noting that some types of enzymatic
artifacts, such as template switching, RCA, and ligation artifacts, can occur during the library
preparation step, leading to false positives and/or biased quantification results [49,99,100].
Meanwhile, nearby homologous genes can also give rise to canonical linear splice junctions
that mimic BSJs, resulting in false signals being detected by bioinformatic algorithms [101,102].

Last but not least, linear RNA expression should be considered when evaluating the expression
of circRNA because of the coexistence of circRNAs and their cognate linear RNAs originating
from the same genomic loci. Functional studies of circRNAs might be overshadowed by
the highly expressed linear RNA isoforms due to their almost totally overlapping sequences
[58,59,103,104]. One possible solution is to find highly expressed circRNAs with a background
low-expression of linear forms. However, direct expression comparison of circRNAswith cognate
linear RNAs is difficult, not only because of their sequence similarity, but also because of the
distinct strategies used for quantifying circular or linear RNA. Generally, linear RNA expression
is calculated by mapped reads normalized by gene length and sequencing depth, such as frag-
ments per kilobase of transcript per million mapped reads (FPKM) or transcripts per million (TPM)
[105]. However, circRNAs are calculated by BSJ-mapped reads only, such as FPB. Since FPKM
and TPM are not scaled to FPB, the expression of circRNAs measured by FPB is not similar to
that of linear RNAs measured by FPKM or TPM (Figure 3C). To solve this problem, Sailfish-cir
[106] reports TPMs for both circular and linear isoforms for their comparison. CIRCexplorer3/
CLEAR, CIRI2, CIRIquant, and DCC report BSJ-mapped reads and reads aligned to colinear
exon–exon junctions to evaluate the expression levels of circular or linear RNA, respectively.
The latter approach has been extended for direct comparison of the expression of circular
and linear RNA (Figure 3C), such as obtaining the CIRCscore with CIRCexplorer3/CLEAR
[58], or the circular to linear ratios with CIRIquant [55]. By using the expression of cognate
linear RNA as the background, highly expressed circRNAs with low-expression linear RNAs
can be selected for subsequent functional studies [58]. Of special note, given their specific
transcript enrichment strategies, ribo− RNA-seq datasets are more suitable for direct circular
and linear RNA expression comparison than others, such as poly(A)– or RNase R datasets.
Nevertheless, except for a small portion [90], the vast majority of circRNAs are much less
abundant than their cognate linear RNAs, and useful approaches to ensure the characteri-
zation of functional circRNAs with highly expressed linear RNAs have been demonstrated
[64,65].
8 Trends in Genetics, Month 2023, Vol. xx, No. xx
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Outstanding questions
Differential expression of circRNAs
has been observed among cell lines
and tissues. Can experimental (and
possibly computational) approaches
be developed to address dynamic
circRNA expression at the single-cell
level?

Can a comprehensive circRNA
analysis process be created to
facilitate identification, quantification,
and downstream functional annotation
of circRNAs?

Both cis-regulatory elements and
trans-acting factors regulate circRNA
expression. Is it feasible to model
these factors in order to predict
circRNA expression under different
conditions?
Concluding remarks and future perspectives
In the past decade, multiple (circular) RNA enrichment strategies and sequencing technologies
have been adopted to achieve genome-wide characterization of circRNA (Figure 1). By taking
advantage of special computational frameworks to identify reads mapped to BSJs featuring
circRNAs, a large number of circRNAs have been uncovered from various types of sequencing
datasets (Figure 2). Methodologies have also been developed and applied to precisely quantify
the expression of circRNA, normalized by sequencing depths and the expression levels of
cognate linear RNA, facilitating cross-sample comparisons for highly expressed circRNAs with
biological significance (Figure 3). Despite these achievements, ambiguous read mapping events,
which occur when short sequencing reads align to multiple genomic loci with similar sequence
content, as well as the batch effects arising from sample preparation, library construction, and
different sequencing runs, challenge precise identification of circRNA on a genome-wide scale
[58,59]. Carefully designing experiments and including biological replicates should be considered
for accurate assessment of circRNA detection. It is worth noting that other types of circRNAs,
such as ciRNAs, have been co-detected with circRNAs via transcriptomic profiling, although
their mechanisms of biogenesis and modes of action are distinct. Several open questions remain
(see Outstanding questions). For example, how can we efficiently and precisely profile circRNAs
at the single-cell level [107,108]? Most single-cell RNA-seq datasets basically contain poly(A)+

RNAs, which are still far from ideal for the characterization of circRNA at single-cell resolution.
More specific approaches are therefore needed to enrich circRNAs from single cells for subsequent
sequencing and bioinformatic analysis. In addition, seamless analytical pipelines from profiling to
quantification and then to functional prediction of circRNAs are also desired.

To conclude, the intricacy of genome-wide circRNA profiling and their accurate quantification
stems from the coexpression of circular and linear RNA transcripts with overlapping sequences.
Diverse transcriptome enrichment strategies, sequencing technologies, and computational
approaches have facilitated the identification of circRNA and subsequent cross-sample compar-
ison to inspect their functional roles in various biological settings. Additional endeavors to develop
innovative techniques specifically designed for circRNAs will unquestionably result in a deeper
comprehension of these fascinating noncoding RNA molecules with a unique circular formation
and their prospective application in diagnosis and therapeutics.
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