
Guo-Hua Yuan is a PhD student at Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences. His research focuses on bioinformatics and machine
learning.
Ying Wang is a post-doctoral researcher at Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences. Her research focuses on genome base
editing and RNA editing.
Guang-Zhong Wang is a principal investigator at Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences. His research focuses on circadian
biology and big-data integration of the brain.
Li Yang is a distinguished principal investigator at Institutes of Biomedical Sciences, Fudan University. His research focuses on bioinformatics, RNA systems
biology and genome editing. He has published over 100 papers.
Received: July 7, 2022. Revised: October 13, 2022. Accepted: October 25, 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(1), 1–13

https://doi.org/10.1093/bib/bbac509

Problem Solving Protocol

RNAlight: a machine learning model to identify
nucleotide features determining RNA subcellular
localization
Guo-Hua Yuan †, Ying Wang †, Guang-Zhong Wang and Li Yang
Corresponding author. Li Yang, Center for Molecular Medicine, Children’s Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics,
International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University,
Dong-An Road, 131, Shanghai, China. Tel: +86-021-54237325; E-mail: liyang_fudan@fudan.edu.cn.
†Guo-Hua Yuan and Ying Wang contributed equally to this work

Abstract

Different RNAs have distinct subcellular localizations. However, nucleotide features that determine these distinct distributions of
lncRNAs and mRNAs have yet to be fully addressed. Here, we develop RNAlight, a machine learning model based on LightGBM,
to identify nucleotide k-mers contributing to the subcellular localizations of mRNAs and lncRNAs. With the Tree SHAP algorithm,
RNAlight extracts nucleotide features for cytoplasmic or nuclear localization of RNAs, indicating the sequence basis for distinct RNA
subcellular localizations. By assembling k-mers to sequence features and subsequently mapping to known RBP-associated motifs,
different types of sequence features and their associated RBPs were additionally uncovered for lncRNAs and mRNAs with distinct
subcellular localizations. Finally, we extended RNAlight to precisely predict the subcellular localizations of other types of RNAs,
including snRNAs, snoRNAs and different circular RNA transcripts, suggesting the generality of using RNAlight for RNA subcellular
localization prediction.
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Introduction
RNA localization is closely related to its biogenesis, processing
and function, which also determines cell fate and polarity [1–3].
In general, most messenger RNAs (mRNAs) transcribed from
protein-coding gene loci are usually processed with a series of co-
and/or post- transcriptional regulation, including but not limited
to 5′-cap, splicing, editing/modification and 3′-adenylation, and
transported from nucleus to cytoplasm for protein translation [4,
5]. Instead, many well-studied long non-coding RNAs (lncRNAs)
with the length of more than 200 nucleotides tend to be located
in nucleus to regulate gene expression by associating with
chromatin [6]. Nevertheless, a set of mRNA transcripts can be
temporarily retained in nucleus, possibly due to the existence of
inverted repeated elements in their 3′ untranslated regions (3′

UTR), by which the translation of specific proteins is retarded
[7–10]. Interestingly, some lncRNAs can be exported to the
cytoplasm to regulate protein translation by associating with
miRNA or ribosome [11, 12]. Thus, understanding RNA molecules’
subcellular localizations is important to their functional study.

A variety of approaches has been applied to study RNA
subcellular localization. RNA fluorescence in situ hybridization
(FISH) can accurately examine RNA subcellular localization in a

single-RNA resolution and in living cells [13–15]. In addition, cyto-
plasmic and nuclear RNAs can be biochemically separated into
different proportions and further examined by RT-PCR for
individual RNAs or by high-throughput methods for various
RNA species on a genome-wide scale. For example, CeFra-seq
[16] extracted cell fractions of cytosol, insolubles, membrane
and nucleus for high-throughput sequencing to identify RNA
localization in these diverse cell fractions. Moreover, APEX-Seq
[17], which is also an RNA-sequencing based method to examine
direct proximity labeling of RNA using the peroxidase enzyme
APEX2, revealed extensive patterns of localization for diverse RNA
classes in distinct subcellular locales. Furthermore, by collecting
the subcellular localization information of thousands of RNAs
across different cell lines and species, multiple databases, such
as LncATLAS [18] and RNALocate [19], have been constructed
to summarize RNA subcellular localization on a genome-wide
scale. These datasets not only provide information of individual
RNA subcellular localization, but also render a foundation for
the prediction of RNA subcellular location in silico. In this case,
several machine learning and deep learning methods, including
mRNALoc [20] and DeepLncRNA [21], have been established to
predict RNA subcellular localization. Specifically, the mRNALoc
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model examined cytoplasmic and nuclear localizations of mRNAs
by support vector machine (SVM) based on sequence information
[20], while the DeepLncRNA pipeline [21] trained a deep learning
framework to predict nucleus to cytoplasm ratios of lncRNAs.
Although these models have been successfully used to predict the
localization of RNA based on sequence information, it remained
unclear what kinds of key sequence features may contribute to
the distinct localization of different types of RNAs. Meanwhile,
since these reported methods were applicable to the prediction
for just one specific type of RNA, mRNA or lncRNA [20–24], a
universal model to perform subcellular localization prediction
for different types of RNAs has been lacking.

In this study, we developed a machine learning model,
RNAlight, which is based on Light Gradient Boosting Machine
(LightGBM) [25], to simultaneously predict the subcellular local-
izations of both mRNA and lncRNA by using k-mer frequencies as
input. With the integration of SHapley Additive exPlanations (Tree
SHAP) [26] and k-mer assembly in RNAlight, different sequence
features and their associated RNA binding proteins (RBPs)
that contribute to distinct subcellular localizations of mRNA
or lncRNA were further revealed. With RNAlight, subcellular
localizations of various types of noncoding RNAs, including
snRNAs, snoRNAs and circular RNAs, were also predicted in line
with their reported functions, suggesting its general application
in the study of RNA localization and function.

Results
Training RNAlight model to predict RNA
subcellular localization
To train models for the prediction of RNA subcellular localiza-
tions, three published datasets, including CeFra-seq [16], APEX-
Seq [17] and LncATLAS [18] (Figure 1A, Supplementary Figure S1A
and B), were collected to construct a combined RNA subcellular
localization library for both lncRNAs (n = 4623) and mRNAs
(n = 6245) with GENCODE v30 annotation file (http://ftp.ebi.ac.uk/
pub/databases/gencode/Gencode_human/release_30/gencode.
v30.annotation.gtf.gz). Of note, only two major subcellular local-
izations, nucleus and cytoplasm, were used for model training and
prediction in this study. Among four fractions in the CeFra-seq
dataset, RNAs in the cytosol, insoluble and membrane fractions
from the general cytoplasmic extract were all considered as cyto-
plasmic localization, and ones in the nuclear fraction were con-
sidered as nuclear localization. Among eight classifications in the
APEX-Seq dataset, cytoplasm, ER membrane, ER lumen and outer
mitochondrial membrane classifications were considered as the
cytoplasm classification, while nucleus, nucleolus, lamina and
nuclear pore classifications were considered as the nucleus clas-
sification. LncATLAS dataset classified lncRNAs with nuclear or
cytoplasmic subcellular localization. Since experimentally exam-
ined in different conditions, such as various cell lines/methods,
some RNAs were shown inconsistent with multiple localizations
across these publicly available datasets, and were removed from
further processing. After this filter step, about 3792 lncRNAs (1986
nuclear and 1806 cytoplasmic lncRNAs, Supplementary Table S1)
and 5180 mRNAs (2256 nuclear and cytoplasmic 2924 mRNAs,
Supplementary Table S2) with consistent and single localization
across different datasets were combined, and randomly split into
training sets (Training-lncRNA, n = 3412; Training-mRNA, n = 4662)
and test sets (Test-lncRNA, n = 380; Test-mRNA, n = 518) with a 9:1
ratio for model construction and evaluation, respectively (Supple-
mentary Figure S1A and B) (‘MATERIALS AND METHODS’ section).

Next, we constructed a series of machine learning and deep
learning models for the prediction of RNA subcellular localization

(Figure 1A). These include three machine learning models, such as
canonical support vector machine (SVM), logistic regression and
an RNAlight model based on the LightGBM framework that uses
tree-based learning algorithms by Microsoft [25], and three deep
learning models, such as convolutional neural network (CNN),
recurrent neural network (RNN) and a hybrid of CNN and RNN
(CNN + RNN) (Figure 1A and Supplementary Figure S2A).

Specifically, we adopted corresponding featurization methods
for machine learning [27] and deep learning [28] models, respec-
tively. For machine learning models, RNA sequences were con-
verted to the k-mer (k equals to 3, 4 or 5) frequency matrix as
input features (Figure 1A, ‘MATERIALS AND METHODS’ section).
For deep learning models, given that the classic CNN model only
accepts the fixed-length input that is connected to the fully
connected layer for classification or regression tasks [29–31], each
RNA sequence was processed to a fixed length (lncRNA, 4000 nt;
mRNA, 9000 nt) by padding or truncating, and then converted
to the tensor by one-hot encoding as input (‘MATERIALS AND
METHODS’ section).

After training with the same sets (‘MATERIALS AND METHODS’
section), we compared their performances and found that
RNAlight showed the best performance in the prediction of RNA
(both lncRNA and mRNA) localization with cross-validation,
indicated by area under the receiver operating characteristic
curve (AUROC) (Figure 1B) and other performance metrics
(Supplementary Table S3). Consistently, when evaluated with
test sets, RNAlight also outperformed other models with the
AUROC values as 0.78 and 0.80 for predicting lncRNA or mRNA
subcellular localization, respectively (Figure 1C, Tables 1 and 2).
Of note, all the deep learning models in our study have relatively
poor performances comparing to machine learning models
(Figure 1B and C). To test whether the strategy of featurization
caused relatively poor performances, we next evaluated these
deep learning models with padding RNA sequences from the
5′ end (Supplementary Figure S2B and C), truncating 5′ end
of RNA sequences (Supplementary Figure S2D and E) or using
the word2vec method (Supplementary Figure S3A). However,
these alternative strategies of featurization didn’t improve
performances significantly (Supplementary Figure S2B and C,
Supplementary Figure S3C and D), while increased time and
memory consumption (Supplementary Figure S3B).

To further evaluate the performance of RNAlight, we used
test sets (Test-lncRNA, n = 380; Test-mRNA, n = 518) to compare
RNAlight with four previously reported prediction models,
including iLoc-lncRNA [23] and lncLocator [22] for lncRNA
localization or iLoc-mRNA [24] and mRNALoc [20] for mRNA
localization. As illustrated by the confusion matrix in Figure 2A,
RNAlight achieved a more accurate prediction for lncRNA
localization than iLoc-lncRNA and lncLocator did, with the
highest accuracy, F1 score (Figure 2B) and AUROC (Figure 2C).
Similarly, RNAlight also outperformed other compared models
in mRNA localization prediction (Figure 2D-F). In addition,
when evaluating with a totally independent dataset of lncR-
NAs (n = 116, Supplementary Figure S4A) and mRNAs (n = 809,
Supplementary Figure S4E) from Halo-seq in Hela cell line
(Supplementary Table S4, ‘MATERIALS AND METHODS’ section)
[32], RNAlight also showed generally better performance than
other models on both lncRNA (Supplementary Figure S4B-D)
and mRNA (Supplementary Figure S4F-H) subcellular localization
prediction.

These results together suggested that the LightGBM-based
RNAlight model could accurately predict the different subcellular
localizations (nucleus and cytoplasm) for both lncRNAs and
mRNAs, which was consistent with the superior performance of
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Table 1. Evaluation of prediction models for lncRNA subcellular localization by using the lncRNA test set (Test-lncRNA, n = 380)

Model Accuracy Sensitivity Specificity MCC F1 score AUROC

RNAlight 0.72 0.76 0.68 0.45 0.74 0.78
SVM 0.69 0.77 0.60 0.37 0.72 0.75
LR 0.70 0.78 0.61 0.40 0.73 0.76
CNN 0.64 0.64 0.64 0.28 0.65 0.72
RNN 0.59 0.48 0.71 0.19 0.55 0.63
CNN + RNN 0.65 0.65 0.65 0.31 0.66 0.71

Table 2. Evaluation of prediction models for mRNA subcellular localization by using the mRNA test set (Test-mRNA, n = 518)

Model Accuracy Sensitivity Specificity MCC F1 score AUROC

RNAlight 0.73 0.59 0.84 0.45 0.66 0.80
SVM 0.64 0.37 0.86 0.26 0.48 0.70
LR 0.66 0.44 0.83 0.30 0.53 0.71
CNN 0.66 0.51 0.78 0.30 0.57 0.71
RNN 0.55 0.02 0.98 −0.02 0.03 0.53
CNN + RNN 0.58 0.07 0.98 0.13 0.12 0.57

LightGBM across a series of benchmark tests in previous studies
[25, 33, 34].

Identifying distinct sequence features for lncRNA
or mRNA subcellular localization with Tree SHAP
algorithm
As k-mers were used as inputs for RNAlight analysis, we
next attempted to identify which k-mers (sequence features)
might play important roles in different (nucleus or cytoplasm)
subcellular localizations of lncRNAs and/or mRNAs. In addition to
the k-mer frequencies (Figure 3A, left), we also used Tree SHapley
Additive exPlanations (SHAP) [26] in the LightGBM algorithm for
the contribution analysis of k-mers in determining RNA nuclear
or cytoplasmic localization. In theory, a positive or negative
SHAP value suggests a potential role of a given k-mer on the
nuclear or cytoplasmic localization of a given examined RNA,
respectively (‘MATERIALS AND METHODS’ section). For each
k-mer, different SHAP values could be quantified to show its
distinct contributions on subcellular localization of different
examined RNAs (Figure 3A, right). To better access the general
effect of each k-mer on nuclear or cytoplasmic localization of all
examined RNAs, Pearson correlation coefficients (PCCs) between
k-mer frequencies and SHAP values were calculated (Figure 3A,
bottom). In general, a positive PCC represents an overall nuclear
localization effect of a given k-mer on analyzed lncRNAs or
mRNAs, and a negative PCC represents an overall cytoplasmic
localization effect of another given k-mer on analyzed lncRNAs
or mRNAs (‘MATERIALS AND METHODS’ section). With PCC > 0.5
as cutoff, 399 k-mers were determined for nuclear localization
of lncRNAs; meanwhile, 501 cytoplasm-related k-mers for
cytoplasmic localization of lncRNAs were selected by PCC <−0.5
(Figure 3B and Supplementary Table S5). Importantly, several
nuclear localization-related sequence elements of lncRNAs that
have been previously identified by a high-throughput screening
of short RNA fragments [10, 35] were successfully predicted by
RNAlight (Figure 3B). Specifically, a cluster of five-mers, such as
CUCCC, CCUCC and ACCUC, were identified with positive PCCs
(0.726, 0.727 and 0.537, respectively) by RNAlight (Figure 3B).
These five-mers can be tiled across the RCCUCCC motif (where
R denotes A/G), which has been previously confirmed associated
with lncRNA nuclear localization [10], suggesting the reliable
prediction of RNA subcellular localization by RNAlight.

Given the fact that a spectrum of variable SHAP values
could be determined for each particular k-mer, we then cal-
culated a Z-transformed mean absolute SHAP value for each
k-mer and used Z-score > 1.96 as an additional cutoff to
identify most important k-mers for RNA subcellular localiza-
tion among all examined lncRNAs or mRNAs. As shown in
Figure 3C and Supplementary Figure S5A and S5B, 20 out of 399
nucleus-related and 43 out of 501 cytoplasm-related k-mers
were individually identified to play key roles in determining
lncRNA nuclear or cytoplasmic localization with Z-score > 1.96
(Supplementary Table S5). Of note, Z-scores of mean absolute
SHAP values of aforementioned five-mers (CUCCC, CCUCC and
ACCUC) were < 1.96, possibly due to their limited distribution
among a small cluster of lncRNAs [10] but not in thousands of
lncRNAs examined in the current study.

It is well known that the interaction of RNA sequences and
their associated RBPs is of importance for RNA subcellular
localization [10, 36]. We thus aimed to find what types of RBPs
could individually bind to these different k-mers for distinct
RNA subcellular localization. To achieve this goal, we assembled
nucleus-related or cytoplasm-related k-mers individually to
different sequence features groups [27]. Briefly, important
localization-related k-mers were first mapped back to the RNA
sequences. Neighboring k-mers were then ligated as candidate
sequence features. Consensus sequence features were further
obtained by the multiple sequence alignment based on these
candidate sequence features (Supplementary Figure S6). From 20
nucleus-related k-mers identified by PCC > 0.5 and Z-score > 1.96
(Figure 3B), 190 sequence features were obtained by k-mer
assembling (Supplementary Table S6); from 34 cytoplasm-related
k-mers identified by PCC <−0.5 and Z-score > 1.96 (Figure 3B),
eight sequence features were obtained by k-mer assembling
(Supplementary Table S6). After that, we used Tomtom [37]
(‘MATERIALS AND METHODS’ section) to map these assembled
sequence features to known RBP-associated motifs reported in the
CISBP-RNA (Catalog of Inferred Sequence Binding Preferences of
RNA binding proteins) database [38] (Supplementary Figure S6).
As a result, 27 out of 190 nucleus-related sequence features
were identified to be associated with 18 RBPs for lncRNA nuclear
localization (Supplementary Table S7). For example, NONO (non-
POU domain containing octamer binding), a well-studied RBP
that preferentially binds RNAs with AGGGA/U elements [39]
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Figure 1. Computational models to predict RNA subcellular localization. (A) Schematic diagram of computational models for RNA subcellular
localization prediction. (B) Cross-validation of different models for lncRNA (left) and mRNA (right) subcellular localization prediction. Each dot represents
the area under the receiver operating characteristic curve (AUROC) from five-fold cross-validation (total AUROC, n = 5). Statistical testing was performed
with one-sided Welch’s t-test. In the box plots, the 25th, 50th and 75th percentiles are indicated as the top, middle and bottom lines, respectively; whiskers
represent the 10th and 90th percentiles, respectively. (C) Evaluation of prediction models for lncRNA (left) and mRNA (right) subcellular localization by
using the test sets.

and participates in paraspeckle formation through binding with
nuclear NEAT1 lncRNA [40], was identified to be associated with
lncRNA nuclear localization in this study (Figure 3D). Instead,
only two out of eight cytoplasm-related sequence features were
identified to be individually associated with two different RBPs

for lncRNA cytoplasmic localization (Supplementary Table S7).
Between these two RBPs, PCBP2 (poly(rC) binding protein 2), one
major cellular poly(rC)-binding protein that is able to bind with
C-rich sequences [38] and cooperates with LINC02535 to enhance
the stability of mRNA in the cytoplasm [41], was predicted
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Figure 2. Comparative evaluation of RNAlight and other published models for RNA subcellular localization prediction. The confusion matrix (A),
accuracy, sensitivity, specificity, F1 score (B) and AUROC curve (C) of RNAlight, iLoc-LncRNA and lncLocator on predicting lncRNA localization with
the lncRNA test set (Test-lncRNA, n = 380). The confusion matrix (D), accuracy, sensitivity, specificity and F1 score (E) of RNAlight, iLoc-mRNA and
mRNALoc on predicting mRNA localization with the mRNA test set (Test-mRNA, n = 518). (F) AUROC curves of RNAlight and iLoc-mRNA on predicting
mRNA localization with the mRNA test set (Test-mRNA, n = 518).
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Figure 3. Identification of localization-associated RNA binding proteins for lncRNAs and mRNAs. (A) Schematic drawing of PCC (Pearson correlation
coefficient) calculation for each given k-mer. (B) Identification of nucleus- and cytoplasm-related k-mers for lncRNAs. The scatter plot shows PCCs
of all 1344 k-mers in lncRNAs. (C) The scatter plots show Z-transformed mean absolute SHAP values of the kmers with PCC > 0.5 (top) or PCC < −0.5
(bottom). (D-E) Examples of k-mer assembled motifs (left) comparing with known RBP-associated motifs (right) for lncRNAs. (F) Identification of nucleus-
and cytoplasm-related k-mers for mRNAs. The scatter plot shows PCCs of all 1344 k-mers in mRNAs. (G) The scatter plots show Z-transformed mean
absolute SHAP values of the k-mers with PCC > 0.5 (top) or PCC <−0.5 (bottom). (H-I) Examples of k-mer assembled motifs (left) comparing with known
RBP-associated motifs (right) for mRNAs.

to be involved in regulating lncRNA cytoplasmic localization
(Figure 3E).

Similar analyses were parallelly performed for mRNA subcel-
lular localization (Figure 3F-I). With PCC > 0.5 as cutoff, 436 k-
mers were determined for nuclear localization of mRNAs,
and 423 cytoplasm-related k-mers for cytoplasmic localiza-
tion of mRNAs were selected by PCC < −0.5 (Figure 3F and

Supplementary Table S8). In addition, 38 out of 436
nucleus-related and 25 out of 423 cytoplasm-related k-mers were
individually identified to play key roles in determining mRNA
nuclear or cytoplasmic localization with Z-score > 1.96 (Figure 3G,
Supplementary Figure S5C and D, Supplementary Table S8). Of
note, no overlap was observed between 20 of important nucleus-
related k-mers for lncRNAs and 38 of those for mRNAs
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(Supplementary Figure S5E, left), and only one cytoplasm-related
k-mer was observed between 43 of important cytoplasm-related
k-mers for lncRNAs and 25 of those for mRNAs (Supplementary
Figure S5E, right). This result (Supplementary Figure S5E) thus
suggested distinct cis-element features contributing to lncRNA
and mRNA subcellular localizations.

In the analysis of identifying what types of RBP could indi-
vidually bind to different k-mers for distinct mRNA subcellular
localization, 1223 sequence features were obtained by k-mer
assembling (Supplementary Table S9) from 38 nucleus-related
k-mers identified by PCC > 0.5 and Z-score > 1.96 (Figure 3G),
and 235 sequence features were obtained by k-mer assembling
(Supplementary Table S9) from 25 cytoplasm-related k-mers
identified by PCC <−0.5 and Z-score > 1.96 (Figure 3G). After
mapping to known RBP-associated motifs by Tomtom, 262 out
of 1223 nucleus-related sequence features were identified to
be associated with 54 RBPs for mRNA nuclear localization
(Supplementary Table S10). For example, ESRP2 (epithelial splic-
ing regulatory protein 2), an epithelial cell-type-specific splicing
regulator which was mainly located in nucleus [42] and prefer-
entially binds to RNA with UGGGRAD motif [38], was identified
to be linked with the regulation of mRNA nuclear localization
(Figure 3H). For the cytoplasmic localization of mRNAs, 67 out
of 235 cytoplasm-related sequence features were identified
to be associated with 16 RBPs (Supplementary Table S10),
including RBM4 (RNA binding motif protein 4) (Figure 3I), an
RNA-binding factor involved in mRNA splicing and translation
regulation [43] with a tendency to bind with GC-rich sequences
[38].

Applying RNAlight to accurately predict
subcellular localizations of various types of RNAs
In contrast to previous models, RNAlight was designed to examine
subcellular localization of both mRNAs and lncRNAs. As expected,
RNAlight showed a preference of cytoplasmic localization for
mRNA transcripts (n = 18 607, GENCODE v30) (the median of Light
score = −0.253, Figure 4A), as most mature mRNAs are preferen-
tially transported to the cytoplasm for protein translation [44].
However, a few mRNAs, such as MLXIPL and NLRP6, were predicted
to be the nuclear localization with Light scores of 0.827 and 0.847,
respectively (Supplementary Table S11), which are in line with
their subcellular localizations in nuclear speckles [9]. Differently,
a bimodal distribution with a slightly nuclear preference (the
median of Light score = 0.037) of annotated lncRNA transcripts
(n = 16 153) was predicted by RNAlight (Figure 4A), suggesting their
regulatory roles at multiple components of cells [13], despite
a greater proportion of lncRNAs were shown with a nucleus
tendency [15, 45]. Accordingly, a set of known nuclear-localized
lncRNAs, such as MALAT1, NEAT1 and XIST [40, 46, 47], were
predicted by RNAlight with the Light scores of 0.671, 0.899 and
0.854, respectively (Supplementary Table S11). Meanwhile, some
known cytoplasmic lncRNAs, such as ZFAS1 and SNHG6 [48, 49],
were successfully predicted as cytoplasmic localization with Light
scores of −0.949 and − 0.913 (Supplementary Table S11).

To further evaluate the generality of RNAlight for the
subcellular localization prediction on different types of RNAs,
we extended the analysis to other RNA species that were not
used for the model training, including small nucleolar RNAs
(snoRNAs), small nuclear RNAs (snRNAs), and circular RNAs.
It is well known that snoRNAs are distributed in eukaryotic
nucleolus for rRNA/tRNA methylation or other RNA modification
[51], and snRNAs are localized in the nucleoli and nucleolus as
main components of spliceosome [52]. Correspondingly, RNAlight

accurately predicted their nuclear localization of snoRNAs
(n = 553, the median of Light score = 0.277) and snRNAs (n = 1825,
the median of Light score = 0.247) (Figure 4A). In addition, two
major types of spliceosome-dependent circular RNAs, circRNAs
from back-spliced exons and circular intronic RNAs (ciRNAs) from
spliced intron lariats, were recently rediscovered at a genome-
wide level in eukaryotes but with different subcellular localization
[53,54]. It has been reported that circRNAs were generally local-
ized in cytoplasm [55], involving in innate immunity [56,57], cell
proliferation [58] and neuronal function [59], while ciRNAs were
preferentially retained in nucleus to regulate Pol II transcription
[60,61]. By using highly expressed circRNAs (FPB > 0.5, n = 800)
and ciRNAs (FPB > 0.2, n = 104) identified by the CLEAR pipeline
[62] in PA1 cells from published ribo–RNA-seq (GEO: GSE73325)
[50] (‘MATERIALS AND METHODS’ section) as inputs, we set up to
examine whether RNAlight could be further extended for circular
RNA subcellular localization prediction. As shown in Figure 4B,
RNAlight successfully predicted the cytoplasmic localization of
circRNAs (the median of Light score = −0.274) and the nuclear
localization of ciRNA (the median of Light score = 0.644). In
contrast, other RNA subcellular localization prediction tools, such
as iLoc-lncRNA, lncLocator, iLoc-mRNA and mRNALoc, failed
to accurately reveal the subcellular localization of cytoplasmic
circRNAs and nuclear ciRNAs (Supplementary Figure S7). These
results together indicated RNAlight as a reliable and universal
model for the subcellular localization prediction of distinct RNA
species.

Discussion
Here, we report RNAlight, a machine learning model based on
LightGBM for precise RNA localization prediction (Figures 1 and
2). In our hands, all examined machine learning models (RNAlight,
SVM and logistic regression) outperformed deep learning models
(CNN, RNN and CNN + RNN) in the prediction of RNA subcel-
lular localization. Applying different strategies of featurization
for deep learning models did not significantly improve their per-
formances (Supplementary Figures S2 and S3). The poor perfor-
mance by deep learning models is possibly due to the relatively
small scale of the dataset for model development. In the future,
we assume that better deep learning models can be developed
with fast-accumulated large-scale datasets. Nevertheless, by inte-
grating the Tree SHAP algorithm and k-mer assembly into the
RNAlight model, determinant sequence features and their asso-
ciated RBPs were identified to contribute to distinct mRNA or
lncRNA subcellular localizations (Figure 3). Importantly, RNAlight
was also shown to be a reliable model for the subcellular local-
ization prediction of various RNAs, including mRNAs, lncRNAs,
snoRNAs, snRNAs, circRNAs and ciRNAs (Figure 4), suggesting its
broad application for the localization prediction of various types
of RNAs.

Compared to some other methods [20–24], RNAlight has two
characteristics for the prediction of RNA subcellular localiza-
tion. On the one hand, by integrating the Tree SHAP algorithm
and k-mer assembly, RNAlight not only predicts RNA subcellu-
lar localization, but also effectively identifies distinct sequence
features for their different subcellular (nuclear or cytoplasmic)
localization. Similar to previous studies showing that certain
cis-elements in the 5′ end or 3′ end of RNAs contribute to their
subcellular localization [8, 63–65], many k-mers identified by
RNAlight in this study were also shown to be enriched in 5′

or 3′ ends of their host RNAs (Supplementary Figures S8–S11),
indicating that RNAlight could indeed learn important sequence
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Figure 4. Application of RNAlight to predict subcellular localizations of various types of RNAs. Density (left) and box (right) charts show the distributions
of Light scores reported by RNAlight across various types of RNAs, including major transcripts of lncRNA, mRNA, snoRNA and snRNA from GENCODE
v30 annotation (A), and circRNAs and ciRNAs identified in PA1 cells from Zhang et al [50] (B). The range of Light score is from −1 to 1, wherein the
interval of −1 to 0 or 0 to 1 indicates cytoplasmic or nuclear localization of RNA, respectively. Statistical testing was performed with two-sided Welch’s
t-test; n.s., not significant.

features that determine RNA subcellular localization. Further
analyses showed that these sequence features could be asso-
ciated with distinct RBPs to affect RNA subcellular localization
(Figure 3). On the other hand, RNAlight has been also extended
to predict subcellular localization of various RNA species, with
reliable results that are consistent with previous observations
from experimental examination (Figure 4), suggesting the robust-
ness of RNAlight for the prediction of RNA subcellular local-
ization. Interestingly, RNAlight could successfully differentiate
RNA circles with exon or intron origins in their distinct subcel-
lular localizations. Different to cytoplasmic localization of most
circRNAs from back-spliced exons, ciRNAs that are produced
from spliced intron lariats were predicted to be preferentially
located in nucleus (Figure 4B), consistent with experimental lines
of evidence [60,61]. Similarly, RNAlight showed that the inclusion
of intron sequences in lncRNA, mRNA and circRNA could sub-
stantially change their subcellular localization from cytoplasm
to nucleus (Supplementary Figure S12), in line with the previous
study that RNA transcripts with retained introns are considered
as incompletely spliced forms and generally retained in nucleus
[66].

Despite of these advantages, RNAlight might also sim-
plify the prediction of RNA subcellular localization by only
inputting features from RNA primary sequences. However,
when adding additional features of predicted RNA secondary
structure and the compositional information, the performances
of both machine learning and deep learning models were not
significantly improved (Supplementary Figure S13, ‘MATERIALS
AND METHODS’ section). Since both RNA secondary structure
and compositional information were predicted or obtained from
RNA primary sequences, we speculated that sequence features

might be sufficient to achieve RNA subcellular localization
prediction in this scenario. In the future, experimental lines of
evidence on RNA secondary structure and modification could be
further considered to improve this model.

In addition, given that our study aims to identify general
sequence features associated with RNA subcellular localization,
RNAlight was trained with RNAs only showing single subcellular
localization as many other prediction models did [20, 22–24]. It
is thus a common limitation of most existing computational
tools for RNA subcellular localization prediction. Nevertheless,
we did not rule out the possibility that RNAs with distinct
subcellular localizations across different cell types or states
are functionally important. Identification of other factors, such
as associated partners (RBPs, U1 snRNA, etc.) and/or cellular
contexts in various conditions, is warranted to understand
how distinct subcellular localizations could be regulated for
a given RNA. Finally, RNAlight only focused on predicting two
major RNA subcellular localizations, nucleus and cytoplasm,
due to the limited datasets. We expected that detailed RNA
subcellular localization could be dissected with more datasets
containing high-resolution RNA localization information, such as
ER, mitochondria or nucleolus.

Taken together, we reported the RNAlight model based on
LightGBM to precisely predict nuclear or cytoplasmic localization
of mRNAs and lncRNAs, and further identified important k-
mer features and RBPs possibly involved in their subcellular
localizations. In the future, additional datasets with extra
features, including but not limited to RNA secondary structure
and/or chemical modification, can be included to train a better
model for characterizing complex and dynamic RNA subcellular
localization.
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Materials and methods
A combined library of lncRNAs
and mRNAs labeled with distinct nuclear or
cytoplasmic localizations
To generate a universal model for both lncRNA and mRNA subcel-
lular localization prediction, we first collected reported datasets
with lncRNA and/or mRNA subcellular localization information,
and further combined them together for a combined library of
lncRNA and mRNA subcellular localization.

On the one hand, several lncRNA subcellular localization
datasets, including LncATLAS [18], CeFra-seq [16] and APEX-Seq
[17], were collected for this study (Supplementary Figure S1A).
Due to distinct methodologies in these datasets for subcellular
localization analysis, different filtering strategies were then
implemented in this study to select nuclear or cytoplasmic
lncRNAs: (i) LncATLAS database records localization information
of 6768 lncRNAs across 14 cell lines [18]. Here, the mean value of
cytoplasmic/nuclear concentration index (CN–RCImean) across 13
cell lines (excluding H1 cell due to its low correlation to other cell
lines, data not shown) was used for filtering: lncRNAs with (CN–
RCImean) <−2 (n = 1857) were considered as nuclear localization,
while those with (CN–RCImean) > 0 (n = 1440) were considered as
cytoplasmic localization. (ii) CeFra-seq extracts cell fractions of
cytosol, insoluble, membrane and nucleus for high-throughput
sequencing and RNAs localized in these diverse cell fractions
could be identified, and 14 746 lncRNAs were detected at these
four cell fractions in HepG2 cells [16]. From the CeFra-seq dataset,
1621 highly expressed lncRNAs with fragments per kilobase per
mapped fragments (FPKM) ≥ 1 in at least one cellular fraction were
obtained for subsequent analysis. Accordingly, cytoplasmic ratio
(CR) was used to distinguish nuclear and cytoplasmic lncRNAs in
the CeFra-seq dataset, computed as below:

CR = CytoFPKM

CytoFPKM + NucFPKM

Here, NucFPKM is the FPKM value of an lncRNA in the nuclear
fraction and CytoFPKM is the maximum FPKM value of the lncRNA
in the cytosol, insolubles or membrane fraction. With these cri-
teria, 435 lncRNAs with CR < 0.4 were considered with the prefer-
ence of nuclear localization, and 844 lncRNAs with CR > 0.6 were
considered with the preference of cytoplasmic localization. (iii)
APEX-Seq provides a practical methodology to identify RNA in
distinct subcellular locales, based on APEX2-mediated proxim-
ity biotinylation of endogenous RNAs in the presence of biotin-
phenol (BP) and H2O2 and following poly(A) + RNA sequencing
[17]. RNA localized in one subcellular locale could be identified
by calculating the fold change of the H2O2-treated sample to
the untreated control sample in HEK293T cells. Here, among all
lncRNAs identified in the APEX-Seq dataset (n = 61), those with
log2(fold change) ≥ 0.75 in at least one component of the nucleus,
nucleolus, lamina and nuclear pore were considered as nuclear
lncRNAs (n = 42) and those with log2(fold change) ≥ 0.75 in at least
one component of the cytoplasm, ER (endoplasmic reticulum)
membrane, ER lumen and outer mitochondrial membrane were
considered as cytoplasmic lncRNAs (n = 5).

After the aforementioned filtering, lncRNAs from these three
resources were combined and lncRNAs with inconsistent but
multiple localizations were removed to generate a combined
library with 1986 nuclear and 1806 cytoplasmic (totally 3792)
lncRNAs.

On the other hand, mRNAs with different subcellular local-
ization were collected from CeFra-seq and APEX-Seq datasets
(Supplementary Figure S1B). Similar processing parameters for
CeFra-seq and APEX-Seq data were applied to select mRNAs
with different subcellular localization. From the CeFra-seq
dataset, 1789 and 2040 mRNAs were selected with the preference
of nuclear or cytoplasmic localization, respectively. From the
APEX-Seq dataset, 1145 and 1261 mRNAs were selected with
the preference of nuclear or cytoplasmic localization. Finally,
mRNAs with different subcellular localization from these two
resources were combined and those with inconsistent but
multiple localizations were filtered out, leading to a total of 5180
mRNAs with nuclear (2256) or cytoplasmic (2924) labels.

Collectively, by stringent filtering, we constructed a combined
library of lncRNAs (n = 3792) and mRNAs (n = 5180) labeled with
distinct nuclear or cytoplasmic localizations. These RNAs were
randomly split into training sets (Training-lncRNA, n = 3412;
Training-mRNA, n = 4662) and test sets (Test-lncRNA, n = 380; Test-
mRNA, n = 518) with a 9:1 ratio for model training and evaluation.

An independent dataset of lncRNAs and mRNAs
labeled with distinct nuclear or cytoplasmic
localizations from Halo-seq
A totally independent dataset containing lncRNA and mRNA
subcellular localization information from Halo-seq in HeLa cell
line [32] was collected to further evaluate RNAlight with other
published models. With adjusted P-value <0.05 and absolute
log2(fold change) ≥ 0.5 as cutoff, H2B-Halo enriched- and Halo-
p65 depleted-RNAs were considered as nuclear localization;
while H2B-Halo depleted- and Halo-p65 enriched-RNAs were
considered as cytoplasmic localization. After removing redundant
and bi-localized ones, 116 lncRNAs and 809 mRNAs with
the nuclear or cytoplasmic label were individually obtained
(Supplementary Table S4) for model evaluation.

Transcript selection
The files recording the information of RNA localization and
Ensembl gene IDs of their parental genes were directly down-
loaded from public resources [16–18, 32]. For each RNA, we
selected the major splice annotation (the −001 isoform) with the
GENCODE v30 annotation file as the previously reported method
[67] to obtain its primary sequence for subsequent analyses.

Featurization of RNA primary sequences
The strategy of featurization for machine-learning based mod-
els was similar to that in the previous publication [27]. Briefly,
frequencies of 1344 k-mers (k equals to 3, 4, 5) that permute
four nucleotides (A, T/U, G, C) were firstly computed to show
their presence in each specific RNA. These frequencies were
further normalized by the RNA length and integrated as a k-mer
frequency matrix, which can characterize each RNA with 1344
distinct features.

For featurization in deep-learning based models, each RNA
sequence was processed to a fixed length (lncRNA, 4000 nt; mRNA,
9000 nt). Specifically, lncRNAs shorter than 4000 nt or mRNAs
shorter than 9000 nt in length were padded with ‘N’ at their 3′

ends, which covered 95% of lncRNAs and mRNAs according to
the 95 percentile of the RNA length (lncRNA, 3825 nt; mRNA,
8469 nt). The rest of lncRNAs and mRNAs with longer lengths were
truncated to the same length (lncRNA, 4000 nt; mRNA, 9000 nt).
After that, all RNAs with the fixed length were converted to
tensor by one-hot encoding as input, where each nucleotide was
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transformed to a binary vector: A (1, 0, 0, 0), T/U (0,1,0,0), G(0,0,1,0),
C(0,0,0,1), N(0,0,0,0).

Featurization of RNA predicted secondary
structure and compositional information
Secondary structures of mRNAs and lncRNAs were predicted by
Vienna RNAfold [68] with default parameters using RNA pri-
mary sequences. The bpRNA algorithm [69] was then used to
annotate predicted structures into different types, including stem
(S), hairpin loop (H), multi-loop (M), internal loop (I), bulge (B),
external loop (X) and end (E). The secondary structure matrix
was constructed to contain the lengths and ratios of different
structure types and the minimum free energy (MFE) of examined
RNAs (Supplementary Figure S13A, middle panel).

For compositional information of RNA, the GC content, AUGC
ratio, GC skew and Z-curve of RNA sequence were calculated by
following mathematical formulas:

GC = FG + FC

FA + FU + FG + FC

AU/GC = FA + FU

FG + FC

GC skew = FG − FC

FG + FC

Z − curve =

⎧⎪⎨
⎪⎩

X = (FA + FG) − (FC + FU)

Y = (FA + FC) − (FG + FU)

Z = (FA + FU) − (FG + FC)

where Fx represents the frequency of each nucleotide (A, U, G, C).
The k-mer frequency matrix (representing sequence feature,

Supplementary Figure S13A, left panel), the secondary structure
matrix (representing structure feature, Supplementary Figure
S13A, middle panel) and the composition matrix (representing
composition feature, Supplementary Figure S13A, right panel),
have been combined as the new input to train the RNAlight model
(Supplementary Figure S13A). For comparison, the structure and
composition features were also added to train the CNN model
with a shared dense layer (Supplementary Figure S13B).

Construction of RNAlight with LightGBM
framework
LightGBM is a new machine-learning implementation of gra-
dient enhanced decision tree (GBDT) with gradient-based one-
side sampling and exclusive feature building, which has several
advantages, including faster training speed, higher efficiency and
lower memory usage. Here, we used the LightGBM Python package
(version 3.1.1.99) to train the RNAlight model by inputting the k-
mer frequency matrix and labeled subcellular localizations from
training sets (Training-lncRNA, n = 3412; Training-mRNA, n = 4662).

Five-fold cross-validation based on RandomizedSearchCV was
performed to select the optimal hyperparameters for LightGBM.
We searched 1000 combinations chosen from following hyperpa-
rameter configurations: learning rate (chosen from [0.1, 0.05, 0.02,
0.01]), the number of estimators (chosen from 24 points that were
evenly spaced between 100 and 2400), the maximum depth of
the individual estimators (chosen from [2–5, 10, 20, 40, 51]), the
minimum number of data in one leaf (chosen from 22 points that
were evenly spaced between 1 and 44), the fraction of subset on
each estimator (chosen from [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]),
the frequency of bagging (chosen from [0, 1, 2]), the penalty of
L1 regularization (chosen from [0, 0.001, 0.005, 0.01, 0.1]) and the
penalty of L2 regularization (chosen from [0, 0.001, 0.005, 0.01,
0.1]).

Construction of support vector machine model
and logistic regression model
Support vector machine (SVM) and logistic regression models
were both performed by Python scikit-learn package (version
0.20.3). For SVM, we searched 60 combinations through the fol-
lowing hyperparameter configurations: the kernel type (chosen
from [‘linear’, ‘rbf’]), the penalty parameter C (chosen from [0.01,
0.1, 1, 10, 100]) and the kernel coefficient γ (chosen from [0.001,
0.005, 0.1, 0.5, 1, 2]). For logistic regression, the penalty of L2
regularization was chosen from [1e-3, 5e-3, 1e-2, 0.05, 0.1, 0.5, 1,
5, 10, 50, 100, 500, 1000] to optimize hyperparameters. Five-fold
cross-validation based on RandomizedSearchCV was also utilized
to select the appropriate set of hyperparameters.

Construction of deep learning-based models
Convolutional neural network (CNN), recurrent neural network
(RNN) and a combinatorial model of CNN and RNN (CNN + RNN)
were applied to train deep learning-based models under the Ten-
sorflow (version 2.0.0) backend in Python (version 3.6.12).

CNN was developed using two convolutional layers and one
dense layer with the following hyperparameters: the number of
filters [32, 64, 128] in the first convolutional layer and the number
of units [256, 512, 1024] in the dense layer. RNN was developed
using one Bidirectional LSTM layer and one dense layer with
flowing hyperparameters: the number of hidden units [16, 32, 64]
in Bidirectional LSTM layer and the number of units [256, 512,
1024] in the dense layer; the combinatorial model of CNN and
RNN (CNN + RNN) was developed using two convolutional layers,
one Bidirectional LSTM layer and one dense layer with following
hyperparameters: the number of filters [32, 64, 128] in first con-
volutional layer and the number of hidden units [16, 32, 64] in
Bidirectional LSTM layer. We chose the model showed the highest
mean AUROC (area under the receiver operating characteristic
curve) in the five-fold cross-validation.

Evaluation of model performance
We used test sets, including Test-lncRNA (n = 380) and Test-mRNA
(n = 518), which were excluded during model training, to evaluate
model performances on predicting subcellular localizations of
lncRNA and mRNA, respectively. Based on the confusion matrix
from actual and predicted labels, models were assessed with the
following indicators:

Accuracy = TP + TN
TP + TN + FP + FN

Specificity = TN
TN + FP

MCC = TP × TN × −FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

F1 = 2 × precision × recall
precision + recall

The AUROC was also calculated among the models except for
mRNALoc because of its unsuitable possibilities from the output.

In our hands, the LightGBM-based RNAlight model developed
in this study showed the best performance for both lncRNA and
mRNA subcellular localization prediction.

Identification of nucleus- and cytoplasm-related
k-mers
Tree SHAP [26] was used to measure k-mer contribution to RNA
subcellular localization. In the Tree SHAP method, the SHAP value,
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which is calculated on the basis of a game theoretic Shapley value
for optimal credit allocations, is assigned to each identified k-mer
in a specific RNA from RNAlight.

Nucleus- and cytoplasm-related k-mers were identified with
two criteria: (i) For each given k-mer, Pearson correlation coef-
ficients (PCCs) between the k-mer frequencies and SHAP val-
ues of each given k-mer in all examined RNAs are obtained to
reflect its impact on the model output. (ii) The Z-score of mean
absolute SHAP value is used to provide a general overview of
its importance on the subcellular localization of all examined
RNAs. Taken together, k-mers with PCC > 0.5 and Z-score > 1.96
suggest to be associated with nuclear localization, and ones with
PCC <−0.5 and Z-score > 1.96 suggest to be associated with cyto-
plasmic localization.

Identification of known RBP-associated motifs
related to RNA subcellular localization
Nucleus- and cytoplasm-related k-mers were separately assem-
bled to consensus sequence features by the previously reported
method [27]. Briefly, we tiled these k-mers back to each
transcript (e.g. nucleus-related k-mers were tiled to the nucleus-
localized transcripts) and joined consecutive k-mers together to
form longer sequences as candidate sequence features. These
candidate sequence features were merged to identify consensus
sequences by multiple sequence alignment. Consensus sequence
features were then mapped to known human RBP position
weight matrices (PWMs) in CISBP-RNA database [38], which
consists of RNA motifs and specificities to RBPs, by Tomtom [37]
(version 5.3.0, https://meme-suite.org/meme/meme_5.3.0/tools/
tomtom) to identify known RBP-associated motifs related to RNA
subcellular localization.

Calculation of Light score
To use RNAlight for the prediction of a given RNA, we scaled the
output of the RNAlight model as Light score:

Light score = 2 × probability − 1

Here, the probability is the original output from RNAlight rang-
ing from 0 to 1, representing the probability of nuclear localization
about the input RNA. Scaled Light scores range from −1 to 1,
of which a given Light score in the interval (−1, 0) indicates
cytoplasmic localization or in the interval (0, 1) indicates nuclear
localization.

Selection of circular RNAs
Highly expressed circRNAs without retained introns (FPB > 0.5,
n = 800) and ciRNAs (FPB > 0.2, n = 104) in PA1 cells from published
ribo–RNA-seq (GEO: GSE73325) [50] were identified by CLEAR
pipeline [62] in this study, and these circular RNAs were further
used to evaluate the performance of RNAlight. Circular RNA
sequences were stretched by Bedtools (version 2.28.0).

Key Points

• A machine learning model, RNAlight, is developed to
efficiently and sensitively predict subcellular localiza-
tions of mRNAs and lncRNAs.

• With embedded Tree SHAP algorithm, RNAlight further
reveals distinct key sequence features and their asso-
ciated RBPs for subcellular localizations of mRNAs or
lncRNAs.

• RNAlight is successfully extended for the subcellular
localization prediction of additional types of noncoding
RNAs that were not used for model development, such
as circular RNAs, suggesting its generality in RNA sub-
cellular localization prediction.

• RNAlight is freely available at https://github.com/
YangLab/RNAlight.

Data availability
All scripts used in this project are currently available at https://
github.com/YangLab/RNAlight, including RNAlight model and
related codes.
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Supplementary data are available online at https://academic.oup.
com/bib.
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